婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > Golang實現請求限流的幾種辦法(小結)

Golang實現請求限流的幾種辦法(小結)

熱門標簽:濮陽自動外呼系統代理 賺地圖標注的錢犯法嗎 智能電銷機器人營銷 長沙ai機器人電銷 烏魯木齊人工電銷機器人系統 廣東語音外呼系統供應商 澳門防封電銷卡 地圖標注測試 福州鐵通自動外呼系統

在開發高并發系統時,有三把利器用來保護系統:緩存、降級和限流。那么何為限流呢?顧名思義,限流就是限制流量,就像你寬帶包了1個G的流量,用完了就沒了。

簡單的并發控制

利用 channel 的緩沖設定,我們就可以來實現并發的限制。我們只要在執行并發的同時,往一個帶有緩沖的 channel 里寫入點東西(隨便寫啥,內容不重要)。讓并發的 goroutine在執行完成后把這個 channel 里的東西給讀走。這樣整個并發的數量就講控制在這個 channel的緩沖區大小上。

比如我們可以用一個 bool 類型的帶緩沖 channel 作為并發限制的計數器。

chLimit := make(chan bool, 1)

然后在并發執行的地方,每創建一個新的 goroutine,都往 chLimit 里塞個東西。

for i, sleeptime := range input {
  chs[i] = make(chan string, 1)
  chLimit - true
  go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
}

這里通過 go 關鍵字并發執行的是新構造的函數。他在執行完后,會把 chLimit的緩沖區里給消費掉一個。

limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
  Run(task_id, sleeptime, timeout, ch)
  -chLimit
}

這樣一來,當創建的 goroutine 數量到達 chLimit 的緩沖區上限后。主 goroutine 就掛起阻塞了,直到這些 goroutine 執行完畢,消費掉了 chLimit 緩沖區中的數據,程序才會繼續創建新的 goroutine 。我們并發數量限制的目的也就達到了。

例子

package main
 
import (
  "fmt"
  "time"
)
 
func Run(task_id, sleeptime, timeout int, ch chan string) {
  ch_run := make(chan string)
  go run(task_id, sleeptime, ch_run)
  select {
  case re := -ch_run:
    ch - re
  case -time.After(time.Duration(timeout) * time.Second):
    re := fmt.Sprintf("task id %d , timeout", task_id)
    ch - re
  }
}
 
func run(task_id, sleeptime int, ch chan string) {
 
  time.Sleep(time.Duration(sleeptime) * time.Second)
  ch - fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)
  return
}
 
func main() {
  input := []int{3, 2, 1}
  timeout := 2
  chLimit := make(chan bool, 1)
  chs := make([]chan string, len(input))
  limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
    Run(task_id, sleeptime, timeout, ch)
    -chLimit
  }
  startTime := time.Now()
  fmt.Println("Multirun start")
  for i, sleeptime := range input {
    chs[i] = make(chan string, 1)
    chLimit - true
    go limitFunc(chLimit, chs[i], i, sleeptime, timeout)
  }
 
  for _, ch := range chs {
    fmt.Println(-ch)
  }
  endTime := time.Now()
  fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))
}

運行結果:

Multirun start
     task id 0 , timeout
     task id 1 , timeout
     task id 2 , sleep 1 second
     Multissh finished. Process time 5s. Number of task is 3

如果修改并發限制為2:

chLimit := make(chan bool, 2)

運行結果:

Multirun start
    task id 0 , timeout
    task id 1 , timeout
    task id 2 , sleep 1 second
    Multissh finished. Process time 3s. Number of task is 3

使用計數器實現請求限流

限流的要求是在指定的時間間隔內,server 最多只能服務指定數量的請求。實現的原理是我們啟動一個計數器,每次服務請求會把計數器加一,同時到達指定的時間間隔后會把計數器清零;這個計數器的實現代碼如下所示:

type RequestLimitService struct {
  Interval time.Duration
  MaxCount int
  Lock   sync.Mutex
  ReqCount int
}
 
func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService {
  reqLimit := RequestLimitService{
    Interval: interval,
    MaxCount: maxCnt,
  }
 
  go func() {
    ticker := time.NewTicker(interval)
    for {
      -ticker.C
      reqLimit.Lock.Lock()
      fmt.Println("Reset Count...")
      reqLimit.ReqCount = 0
      reqLimit.Lock.Unlock()
    }
  }()
 
  return reqLimit
}
 
func (reqLimit *RequestLimitService) Increase() {
  reqLimit.Lock.Lock()
  defer reqLimit.Lock.Unlock()
 
  reqLimit.ReqCount += 1
}
 
func (reqLimit *RequestLimitService) IsAvailable() bool {
  reqLimit.Lock.Lock()
  defer reqLimit.Lock.Unlock()
 
  return reqLimit.ReqCount  reqLimit.MaxCount
}

在服務請求的時候, 我們會對當前計數器和閾值進行比較,只有未超過閾值時才進行服務:

var RequestLimit = NewRequestLimitService(10 * time.Second, 5)
 
func helloHandler(w http.ResponseWriter, r *http.Request) {
  if RequestLimit.IsAvailable() {
    RequestLimit.Increase()
    fmt.Println(RequestLimit.ReqCount)
    io.WriteString(w, "Hello world!\n")
  } else {
    fmt.Println("Reach request limiting!")
    io.WriteString(w, "Reach request limit!\n")
  }
}
 
func main() {
  fmt.Println("Server Started!")
  http.HandleFunc("/", helloHandler)
  http.ListenAndServe(":8000", nil)
}

完整代碼 url

使用golang官方包實現httpserver頻率限制

使用golang來編寫httpserver時,可以使用官方已經有實現好的包:

import(
  "fmt"
  "net"
  "golang.org/x/net/netutil"
)
 
func main() {
  l, err := net.Listen("tcp", "127.0.0.1:0")
  if err != nil {
    fmt.Fatalf("Listen: %v", err)
  }
  defer l.Close()
  l = LimitListener(l, max)
  
  http.Serve(l, http.HandlerFunc())
  
  //bla bla bla.................
}

源碼[url] ( https://github.com/golang/net/blob/master/netutil/listen.go ),基本思路就是為連接數計數,通過make chan來建立一個最大連接數的channel, 每次accept就+1,close時候就-1. 當到達最大連接數時,就等待空閑連接出來之后再accept。

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
 
// Package netutil provides network utility functions, complementing the more
// common ones in the net package.
package netutil // import "golang.org/x/net/netutil"
 
import (
  "net"
  "sync"
)
 
// LimitListener returns a Listener that accepts at most n simultaneous
// connections from the provided Listener.
func LimitListener(l net.Listener, n int) net.Listener {
  return limitListener{
    Listener: l,
    sem:   make(chan struct{}, n),
    done:   make(chan struct{}),
  }
}
 
type limitListener struct {
  net.Listener
  sem    chan struct{}
  closeOnce sync.Once   // ensures the done chan is only closed once
  done   chan struct{} // no values sent; closed when Close is called
}
 
// acquire acquires the limiting semaphore. Returns true if successfully
// accquired, false if the listener is closed and the semaphore is not
// acquired.
func (l *limitListener) acquire() bool {
  select {
  case -l.done:
    return false
  case l.sem - struct{}{}:
    return true
  }
}
func (l *limitListener) release() { -l.sem }
 
func (l *limitListener) Accept() (net.Conn, error) {
  //如果sem滿了,就會阻塞在這
  acquired := l.acquire()
  // If the semaphore isn't acquired because the listener was closed, expect
  // that this call to accept won't block, but immediately return an error.
  c, err := l.Listener.Accept()
  if err != nil {
    if acquired {
      l.release()
    }
    return nil, err
  }
  return limitListenerConn{Conn: c, release: l.release}, nil
}
 
func (l *limitListener) Close() error {
  err := l.Listener.Close()
  l.closeOnce.Do(func() { close(l.done) })
  return err
}
 
type limitListenerConn struct {
  net.Conn
  releaseOnce sync.Once
  release   func()
}
 
func (l *limitListenerConn) Close() error {
  err := l.Conn.Close()
  //close時釋放占用的sem
  l.releaseOnce.Do(l.release)
  return err
}

使用Token Bucket(令牌桶算法)實現請求限流

在開發高并發系統時有三把利器用來保護系統:緩存、降級和限流!為了保證在業務高峰期,線上系統也能保證一定的彈性和穩定性,最有效的方案就是進行服務降級了,而限流就是降級系統最常采用的方案之一。

這里為大家推薦一個開源庫 https://github.com/didip/tollbooth ,但是,如果您想要一些簡單的、輕量級的或者只是想要學習的東西,實現自己的中間件來處理速率限制并不困難。今天我們就來聊聊如何實現自己的一個限流中間件

首先我們需要安裝一個提供了 Token bucket (令牌桶算法)的依賴包,上面提到的toolbooth 的實現也是基于它實現的:

$ go get golang.org/x/time/rate

Demo代碼的實現

package main
 
import (
  "net/http"
  "golang.org/x/time/rate"
)
 
var limiter = rate.NewLimiter(2, 5)
func limit(next http.Handler) http.Handler {
  return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
    if limiter.Allow() == false {
      http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
      return
    }
    next.ServeHTTP(w, r)
  })
}
 
func main() {
  mux := http.NewServeMux()
  mux.HandleFunc("/", okHandler)
  // Wrap the servemux with the limit middleware.
  http.ListenAndServe(":4000", limit(mux))
}
 
func okHandler(w http.ResponseWriter, r *http.Request) {
  w.Write([]byte("OK"))
}

算法描述:用戶配置的平均發送速率為r,則每隔1/r秒一個令牌被加入到桶中(每秒會有r個令牌放入桶中),桶中最多可以存放b個令牌。如果令牌到達時令牌桶已經滿了,那么這個令牌會被丟棄;

實現

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rate provides a rate limiter.
package rate
 
import (
  "fmt"
  "math"
  "sync"
  "time"
 
  "golang.org/x/net/context"
)
 
// Limit defines the maximum frequency of some events.
// Limit is represented as number of events per second.
// A zero Limit allows no events.
type Limit float64
 
// Inf is the infinite rate limit; it allows all events (even if burst is zero).
const Inf = Limit(math.MaxFloat64)
 
// Every converts a minimum time interval between events to a Limit.
func Every(interval time.Duration) Limit {
  if interval = 0 {
    return Inf
  }
  return 1 / Limit(interval.Seconds())
}
 
// A Limiter controls how frequently events are allowed to happen.
// It implements a "token bucket" of size b, initially full and refilled
// at rate r tokens per second.
// Informally, in any large enough time interval, the Limiter limits the
// rate to r tokens per second, with a maximum burst size of b events.
// As a special case, if r == Inf (the infinite rate), b is ignored.
// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.
//
// The zero value is a valid Limiter, but it will reject all events.
// Use NewLimiter to create non-zero Limiters.
//
// Limiter has three main methods, Allow, Reserve, and Wait.
// Most callers should use Wait.
//
// Each of the three methods consumes a single token.
// They differ in their behavior when no token is available.
// If no token is available, Allow returns false.
// If no token is available, Reserve returns a reservation for a future token
// and the amount of time the caller must wait before using it.
// If no token is available, Wait blocks until one can be obtained
// or its associated context.Context is canceled.
//
// The methods AllowN, ReserveN, and WaitN consume n tokens.
type Limiter struct {
  //maximum token, token num per second
  limit Limit
  //burst field, max token num
  burst int
  mu  sync.Mutex
  //tokens num, change
  tokens float64
  // last is the last time the limiter's tokens field was updated
  last time.Time
  // lastEvent is the latest time of a rate-limited event (past or future)
  lastEvent time.Time
}
 
// Limit returns the maximum overall event rate.
func (lim *Limiter) Limit() Limit {
  lim.mu.Lock()
  defer lim.mu.Unlock()
  return lim.limit
}
 
// Burst returns the maximum burst size. Burst is the maximum number of tokens
// that can be consumed in a single call to Allow, Reserve, or Wait, so higher
// Burst values allow more events to happen at once.
// A zero Burst allows no events, unless limit == Inf.
func (lim *Limiter) Burst() int {
  return lim.burst
}
 
// NewLimiter returns a new Limiter that allows events up to rate r and permits
// bursts of at most b tokens.
func NewLimiter(r Limit, b int) *Limiter {
  return Limiter{
    limit: r,
    burst: b,
  }
}
 
// Allow is shorthand for AllowN(time.Now(), 1).
func (lim *Limiter) Allow() bool {
  return lim.AllowN(time.Now(), 1)
}
 
// AllowN reports whether n events may happen at time now.
// Use this method if you intend to drop / skip events that exceed the rate limit.
// Otherwise use Reserve or Wait.
func (lim *Limiter) AllowN(now time.Time, n int) bool {
  return lim.reserveN(now, n, 0).ok
}
 
// A Reservation holds information about events that are permitted by a Limiter to happen after a delay.
// A Reservation may be canceled, which may enable the Limiter to permit additional events.
type Reservation struct {
  ok   bool
  lim  *Limiter
  tokens int
  //This is the time to action
  timeToAct time.Time
  // This is the Limit at reservation time, it can change later.
  limit Limit
}
 
// OK returns whether the limiter can provide the requested number of tokens
// within the maximum wait time. If OK is false, Delay returns InfDuration, and
// Cancel does nothing.
func (r *Reservation) OK() bool {
  return r.ok
}
 
// Delay is shorthand for DelayFrom(time.Now()).
func (r *Reservation) Delay() time.Duration {
  return r.DelayFrom(time.Now())
}
 
// InfDuration is the duration returned by Delay when a Reservation is not OK.
const InfDuration = time.Duration(163 - 1)
 
// DelayFrom returns the duration for which the reservation holder must wait
// before taking the reserved action. Zero duration means act immediately.
// InfDuration means the limiter cannot grant the tokens requested in this
// Reservation within the maximum wait time.
func (r *Reservation) DelayFrom(now time.Time) time.Duration {
  if !r.ok {
    return InfDuration
  }
  delay := r.timeToAct.Sub(now)
  if delay  0 {
    return 0
  }
  return delay
}
 
// Cancel is shorthand for CancelAt(time.Now()).
func (r *Reservation) Cancel() {
  r.CancelAt(time.Now())
  return
}
 
// CancelAt indicates that the reservation holder will not perform the reserved action
// and reverses the effects of this Reservation on the rate limit as much as possible,
// considering that other reservations may have already been made.
func (r *Reservation) CancelAt(now time.Time) {
  if !r.ok {
    return
  }
  r.lim.mu.Lock()
  defer r.lim.mu.Unlock()
  if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {
    return
  }
  // calculate tokens to restore
  // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved
  // after r was obtained. These tokens should not be restored.
  restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct))
  if restoreTokens = 0 {
    return
  }
  // advance time to now
  now, _, tokens := r.lim.advance(now)
  // calculate new number of tokens
  tokens += restoreTokens
  if burst := float64(r.lim.burst); tokens > burst {
    tokens = burst
  }
  // update state
  r.lim.last = now
  r.lim.tokens = tokens
  if r.timeToAct == r.lim.lastEvent {
    prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))
    if !prevEvent.Before(now) {
      r.lim.lastEvent = prevEvent
    }
  }
  return
}
 
// Reserve is shorthand for ReserveN(time.Now(), 1).
func (lim *Limiter) Reserve() *Reservation {
  return lim.ReserveN(time.Now(), 1)
}
 
// ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.
// The Limiter takes this Reservation into account when allowing future events.
// ReserveN returns false if n exceeds the Limiter's burst size.
// Usage example:
//  r, ok := lim.ReserveN(time.Now(), 1)
//  if !ok {
//   // Not allowed to act! Did you remember to set lim.burst to be > 0 ?
//  }
//  time.Sleep(r.Delay())
//  Act()
// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.
// If you need to respect a deadline or cancel the delay, use Wait instead.
// To drop or skip events exceeding rate limit, use Allow instead.
func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation {
  r := lim.reserveN(now, n, InfDuration)
  return r
}
 
// Wait is shorthand for WaitN(ctx, 1).
func (lim *Limiter) Wait(ctx context.Context) (err error) {
  return lim.WaitN(ctx, 1)
}
 
// WaitN blocks until lim permits n events to happen.
// It returns an error if n exceeds the Limiter's burst size, the Context is
// canceled, or the expected wait time exceeds the Context's Deadline.
func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) {
  if n > lim.burst {
    return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst)
  }
  // Check if ctx is already cancelled
  select {
  case -ctx.Done():
    return ctx.Err()
  default:
  }
  // Determine wait limit
  now := time.Now()
  waitLimit := InfDuration
  if deadline, ok := ctx.Deadline(); ok {
    waitLimit = deadline.Sub(now)
  }
  // Reserve
  r := lim.reserveN(now, n, waitLimit)
  if !r.ok {
    return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n)
  }
  // Wait
  t := time.NewTimer(r.DelayFrom(now))
  defer t.Stop()
  select {
  case -t.C:
    // We can proceed.
    return nil
  case -ctx.Done():
    // Context was canceled before we could proceed. Cancel the
    // reservation, which may permit other events to proceed sooner.
    r.Cancel()
    return ctx.Err()
  }
}
 
// SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).
func (lim *Limiter) SetLimit(newLimit Limit) {
  lim.SetLimitAt(time.Now(), newLimit)
}
 
// SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated
// or underutilized by those which reserved (using Reserve or Wait) but did not yet act
// before SetLimitAt was called.
func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) {
  lim.mu.Lock()
  defer lim.mu.Unlock()
  now, _, tokens := lim.advance(now)
  lim.last = now
  lim.tokens = tokens
  lim.limit = newLimit
}
 
// reserveN is a helper method for AllowN, ReserveN, and WaitN.
// maxFutureReserve specifies the maximum reservation wait duration allowed.
// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.
func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation {
  lim.mu.Lock()
  defer lim.mu.Unlock()
  if lim.limit == Inf {
    return Reservation{
      ok:    true,
      lim:    lim,
      tokens:  n,
      timeToAct: now,
    }
  }
  now, last, tokens := lim.advance(now)
  // Calculate the remaining number of tokens resulting from the request.
  tokens -= float64(n)
  // Calculate the wait duration
  var waitDuration time.Duration
  if tokens  0 {
    waitDuration = lim.limit.durationFromTokens(-tokens)
  }
  // Decide result
  ok := n = lim.burst  waitDuration = maxFutureReserve
  // Prepare reservation
  r := Reservation{
    ok:  ok,
    lim:  lim,
    limit: lim.limit,
  }
  if ok {
    r.tokens = n
    r.timeToAct = now.Add(waitDuration)
  }
  // Update state
  if ok {
    lim.last = now
    lim.tokens = tokens
    lim.lastEvent = r.timeToAct
  } else {
    lim.last = last
  }
  return r
}
 
// advance calculates and returns an updated state for lim resulting from the passage of time.
// lim is not changed.
func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) {
  last := lim.last
  if now.Before(last) {
    last = now
  }
  // Avoid making delta overflow below when last is very old.
  maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens)
  elapsed := now.Sub(last)
  if elapsed > maxElapsed {
    elapsed = maxElapsed
  }
  // Calculate the new number of tokens, due to time that passed.
  delta := lim.limit.tokensFromDuration(elapsed)
  tokens := lim.tokens + delta
  if burst := float64(lim.burst); tokens > burst {
    tokens = burst
  }
  return now, last, tokens
}
 
// durationFromTokens is a unit conversion function from the number of tokens to the duration
// of time it takes to accumulate them at a rate of limit tokens per second.
func (limit Limit) durationFromTokens(tokens float64) time.Duration {
  seconds := tokens / float64(limit)
  return time.Nanosecond * time.Duration(1e9*seconds)
}
 
// tokensFromDuration is a unit conversion function from a time duration to the number of tokens
// which could be accumulated during that duration at a rate of limit tokens per second.
func (limit Limit) tokensFromDuration(d time.Duration) float64 {
  return d.Seconds() * float64(limit)
}

雖然在某些情況下使用單個全局速率限制器非常有用,但另一種常見情況是基于IP地址或API密鑰等標識符為每個用戶實施速率限制器。我們將使用IP地址作為標識符。簡單實現代碼如下:

package main
import (
  "net/http"
  "sync"
  "time"
  "golang.org/x/time/rate"
)
// Create a custom visitor struct which holds the rate limiter for each
// visitor and the last time that the visitor was seen.
type visitor struct {
  limiter *rate.Limiter
  lastSeen time.Time
}
// Change the the map to hold values of the type visitor.
var visitors = make(map[string]*visitor)
var mtx sync.Mutex
// Run a background goroutine to remove old entries from the visitors map.
func init() {
  go cleanupVisitors()
}
func addVisitor(ip string) *rate.Limiter {
  limiter := rate.NewLimiter(2, 5)
  mtx.Lock()
  // Include the current time when creating a new visitor.
  visitors[ip] = visitor{limiter, time.Now()}
  mtx.Unlock()
  return limiter
}
func getVisitor(ip string) *rate.Limiter {
  mtx.Lock()
  v, exists := visitors[ip]
  if !exists {
    mtx.Unlock()
    return addVisitor(ip)
  }
  // Update the last seen time for the visitor.
  v.lastSeen = time.Now()
  mtx.Unlock()
  return v.limiter
}
// Every minute check the map for visitors that haven't been seen for
// more than 3 minutes and delete the entries.
func cleanupVisitors() {
  for {
    time.Sleep(time.Minute)
    mtx.Lock()
    for ip, v := range visitors {
      if time.Now().Sub(v.lastSeen) > 3*time.Minute {
        delete(visitors, ip)
      }
    }
    mtx.Unlock()
  }
}
func limit(next http.Handler) http.Handler {
  return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
    limiter := getVisitor(r.RemoteAddr)
    if limiter.Allow() == false {
      http.Error(w, http.StatusText(429), http.StatusTooManyRequests)
      return
    }
    next.ServeHTTP(w, r)
  })
}

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • golang簡易令牌桶算法實現代碼
  • 詳解Golang實現請求限流的幾種辦法
  • golang高并發限流操作 ping / telnet
  • golang接口IP限流,IP黑名單,IP白名單的實例
  • Golang 限流器的使用和實現示例
  • Golang模擬令牌桶進行對訪問的限流方式

標簽:德州 慶陽 廣西 阿克蘇 西雙版納 貴陽 調研邀請 太原

巨人網絡通訊聲明:本文標題《Golang實現請求限流的幾種辦法(小結)》,本文關鍵詞  Golang,實現,請求,限,流的,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Golang實現請求限流的幾種辦法(小結)》相關的同類信息!
  • 本頁收集關于Golang實現請求限流的幾種辦法(小結)的相關信息資訊供網民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    欧美一区二区大片| 精品1区2区3区| 久久一区二区视频| 91精品国产91久久综合桃花| 亚洲午夜羞羞片| 91欧美激情一区二区三区成人| 亚洲午夜久久久| 中文字幕在线一区免费| 一区av在线播放| 国产在线精品一区二区夜色| 亚洲地区一二三色| 96av麻豆蜜桃一区二区| 亚洲国产精品欧美一二99| www.日韩av| 美女视频黄久久| 91丨porny丨户外露出| 国产美女视频一区| 美女一区二区久久| 亚洲国产毛片aaaaa无费看| 国产精品欧美久久久久一区二区| 欧美一区二区三区四区在线观看| 亚洲精品中文字幕在线观看| 亚洲精品成人a在线观看| 91视频你懂的| 国产成人福利片| 欧美午夜不卡视频| 亚洲影院理伦片| 经典三级在线一区| 国产欧美综合在线| 日韩你懂的在线观看| 国产调教视频一区| 911精品产国品一二三产区| 国产99久久久久| 国产毛片精品一区| 亚洲欧美另类在线| 国产乱色国产精品免费视频| 99精品久久久久久| 成人免费av网站| 国产精品自产自拍| 国产 日韩 欧美大片| 一区二区视频在线| 亚洲影视在线观看| 国产suv一区二区三区88区| 日韩av二区在线播放| 欧美精品一二三| 在线观看成人免费视频| 在线播放一区二区三区| 日韩美女天天操| 美女一区二区视频| 国产成人精品三级| 国产成人在线免费| 亚洲美女精品一区| 亚洲欧洲精品成人久久奇米网 | 亚洲日本在线a| 成人午夜av电影| 亚洲免费观看高清完整版在线观看熊| 亚洲精品欧美专区| 亚洲蜜臀av乱码久久精品| 亚洲午夜免费电影| 免费成人在线视频观看| 国产黄色精品视频| 福利一区二区在线观看| 成人午夜激情片| 欧美艳星brazzers| 91麻豆精品久久久久蜜臀| 精品va天堂亚洲国产| 夜夜嗨av一区二区三区网页 | 国产精品人成在线观看免费 | 韩国女主播一区二区三区| 99久久久精品免费观看国产蜜| 成人精品高清在线| 欧美剧在线免费观看网站 | 性做久久久久久久久| 精品粉嫩aⅴ一区二区三区四区| 日韩精品亚洲专区| 国内精品伊人久久久久影院对白| 六月丁香婷婷色狠狠久久| 欧美三级视频在线播放| 久久久三级国产网站| 成人黄色在线网站| 精品国精品国产| 性久久久久久久久久久久| 日本sm残虐另类| 色综合久久九月婷婷色综合| 亚洲欧美一区二区三区极速播放| 欧美一区二区在线免费播放 | 在线精品亚洲一区二区不卡| 2017欧美狠狠色| 精品99一区二区| 亚洲国产精品久久久男人的天堂 | 国产精品久久久久久久久果冻传媒 | 亚洲一区日韩精品中文字幕| 国产美女精品一区二区三区| 欧美精品一区二区三区一线天视频 | 成人综合婷婷国产精品久久 | 国产伦精品一区二区三区视频青涩 | 久久美女艺术照精彩视频福利播放| 中文字幕在线不卡国产视频| 奇米精品一区二区三区四区| 欧美日精品一区视频| 日韩精彩视频在线观看| 欧美日韩一区在线观看| 午夜精品福利视频网站| 波多野洁衣一区| 午夜视频一区二区| 久久久综合九色合综国产精品| 久久国产精品免费| 9191久久久久久久久久久| 亚洲国产一区二区在线播放| 久久亚洲一区二区三区四区| 国产伦精品一区二区三区视频青涩| 亚洲一区免费视频| 欧美人与z0zoxxxx视频| 亚洲女人小视频在线观看| 不卡的av电影在线观看| 午夜精品国产更新| 日韩精品自拍偷拍| 国产综合色产在线精品| 国产精品久久久久久久久果冻传媒 | 日产欧产美韩系列久久99| 欧美日韩在线播放三区| 视频在线观看一区| 日韩精品中文字幕一区| 亚洲成人免费视频| 欧美欧美欧美欧美| 国产一区二区在线影院| 欧美一区二区三区四区视频| 美女一区二区在线观看| 亚洲免费观看高清| 日韩视频免费直播| 青椒成人免费视频| 精品免费视频.| 国产成人精品免费一区二区| 亚洲线精品一区二区三区八戒| 久久综合成人精品亚洲另类欧美 | 99久久精品情趣| 国产**成人网毛片九色 | 久久久久久一级片| 欧美成人精品二区三区99精品| 国产成人在线视频网站| 另类的小说在线视频另类成人小视频在线| 亚洲精品国久久99热| 91精品福利在线一区二区三区 | 亚洲成av人**亚洲成av**| 国产午夜精品一区二区| 最新高清无码专区| 91精品久久久久久久久99蜜臂| 欧美放荡的少妇| 亚洲一区二区精品视频| 欧美丝袜丝交足nylons图片| 亚洲国产一区视频| 337p亚洲精品色噜噜狠狠| 日本欧美肥老太交大片| 欧美一区二区三区成人| 五月天国产精品| 欧美一级二级三级乱码| 老色鬼精品视频在线观看播放| 日韩你懂的在线播放| 久久精品72免费观看| 久久免费电影网| 成人免费av资源| 亚洲一区二区三区美女| 欧美另类久久久品| 日本欧美韩国一区三区| 久久久久国产精品厨房| 99re成人精品视频| 日日欢夜夜爽一区| 久久久久久电影| 91国偷自产一区二区使用方法| 亚洲第一激情av| 欧美电视剧免费全集观看| 国产成人在线电影| 伊人婷婷欧美激情| 日韩视频中午一区| 成人亚洲精品久久久久软件| 亚洲精品videosex极品| ●精品国产综合乱码久久久久| 欧美va亚洲va香蕉在线| 久久久不卡网国产精品一区| 欧美日韩亚洲综合在线| 色哟哟亚洲精品| 色欧美日韩亚洲| 欧美一区二区网站| 亚洲综合色网站| 欧美大胆人体bbbb| 91蜜桃传媒精品久久久一区二区| 亚洲日本在线天堂| 国产乱码字幕精品高清av| 色婷婷久久久亚洲一区二区三区 | 日韩精品成人一区二区在线| 蜜桃在线一区二区三区| 国精品**一区二区三区在线蜜桃| 国产精品亚洲午夜一区二区三区| 99re6这里只有精品视频在线观看| 成人美女在线观看| 99久久精品情趣| 欧美一级夜夜爽| 精品久久久久久久久久久院品网 | 国内成人自拍视频| 粉嫩av一区二区三区在线播放|