婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法分析

PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法分析

熱門標簽:400電話申請辦理 網絡電話400申請 福建高頻外呼防封系統哪家好 商丘外呼系統好處 外呼系統人工客服 周口網絡回撥外呼系統 隨州銷售電銷機器人公司 全國各省地圖標注點 百度地圖標注類型是酒店

本文實例講述了PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法。分享給大家供大家參考,具體如下:

在web開發中圖這種數據結構的應用比樹要少很多,但在一些業務中也常有出現,下面介紹幾種圖的尋徑算法,并用PHP加以實現.

佛洛依德算法,主要是在頂點集內,按點與點相鄰邊的權重做遍歷,如果兩點不相連則權重無窮大,這樣通過多次遍歷可以得到點到點的最短路徑,邏輯上最好理解,實現也較為簡單,時間復雜度為O(n^3);

迪杰斯特拉算法,OSPF中實現最短路由所用到的經典算法,djisktra算法的本質是貪心算法,不斷的遍歷擴充頂點路徑集合S,一旦發現更短的點到點路徑就替換S中原有的最短路徑,完成所有遍歷后S便是所有頂點的最短路徑集合了.迪杰斯特拉算法的時間復雜度為O(n^2);

克魯斯卡爾算法,在圖內構造最小生成樹,達到圖中所有頂點聯通.從而得到最短路徑.時間復雜度為O(N*logN);

?php
/**
 * PHP 實現圖鄰接矩陣
 */
class MGraph{
  private $vexs; //頂點數組
  private $arc; //邊鄰接矩陣,即二維數組
  private $arcData; //邊的數組信息
  private $direct; //圖的類型(無向或有向)
  private $hasList; //嘗試遍歷時存儲遍歷過的結點
  private $queue; //廣度優先遍歷時存儲孩子結點的隊列,用數組模仿
  private $infinity = 65535;//代表無窮,即兩點無連接,建帶權值的圖時用,本示例不帶權值
  private $primVexs; //prim算法時保存頂點
  private $primArc; //prim算法時保存邊
  private $krus;//kruscal算法時保存邊的信息
  public function MGraph($vexs, $arc, $direct = 0){
    $this->vexs = $vexs;
    $this->arcData = $arc;
    $this->direct = $direct;
    $this->initalizeArc();
    $this->createArc();
  }
  private function initalizeArc(){
    foreach($this->vexs as $value){
      foreach($this->vexs as $cValue){
        $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
      }
    }
  }
  //創建圖 $direct:0表示無向圖,1表示有向圖
  private function createArc(){
    foreach($this->arcData as $key=>$value){
      $strArr = str_split($key);
      $first = $strArr[0];
      $last = $strArr[1];
      $this->arc[$first][$last] = $value;
      if(!$this->direct){
        $this->arc[$last][$first] = $value;
      }
    }
  }
  //floyd算法
  public function floyd(){
    $path = array();//路徑數組
    $distance = array();//距離數組
    foreach($this->arc as $key=>$value){
      foreach($value as $k=>$v){
        $path[$key][$k] = $k;
        $distance[$key][$k] = $v;
      }
    }
    for($j = 0; $j  count($this->vexs); $j ++){
      for($i = 0; $i  count($this->vexs); $i ++){
        for($k = 0; $k  count($this->vexs); $k ++){
          if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
            $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
            $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
          }
        }
      }
    }
    return array($path, $distance);
  }
  //djikstra算法
  public function dijkstra(){
    $final = array();
    $pre = array();//要查找的結點的前一個結點數組
    $weight = array();//權值和數組
    foreach($this->arc[$this->vexs[0]] as $k=>$v){
      $final[$k] = 0;
      $pre[$k] = $this->vexs[0];
      $weight[$k] = $v;
    }
    $final[$this->vexs[0]] = 1;
    for($i = 0; $i  count($this->vexs); $i ++){
      $key = 0;
      $min = $this->infinity;
      for($j = 1; $j  count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1  $weight[$temp]  $min){
          $key = $temp;
          $min = $weight[$temp];
        }
      }
      $final[$key] = 1;
      for($j = 0; $j  count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1  ($min + $this->arc[$key][$temp])  $weight[$temp]){
          $pre[$temp] = $key;
          $weight[$temp] = $min + $this->arc[$key][$temp];
        }
      }
    }
    return $pre;
  }
  //kruscal算法
  private function kruscal(){
    $this->krus = array();
    foreach($this->vexs as $value){
      $krus[$value] = 0;
    }
    foreach($this->arc as $key=>$value){
      $begin = $this->findRoot($key);
      foreach($value as $k=>$v){
        $end = $this->findRoot($k);
        if($begin != $end){
          $this->krus[$begin] = $end;
        }
      }
    }
  }
  //查找子樹的尾結點
  private function findRoot($node){
    while($this->krus[$node] > 0){
      $node = $this->krus[$node];
    }
    return $node;
  }
  //prim算法,生成最小生成樹
  public function prim(){
    $this->primVexs = array();
    $this->primArc = array($this->vexs[0]=>0);
    for($i = 1; $i  count($this->vexs); $i ++){
      $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
      $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
    }
    for($i = 0; $i  count($this->vexs); $i ++){
      $min = $this->infinity;
      $key;
      foreach($this->vexs as $k=>$v){
        if($this->primArc[$v] != 0  $this->primArc[$v]  $min){
          $key = $v;
          $min = $this->primArc[$v];
        }
      }
      $this->primArc[$key] = 0;
      foreach($this->arc[$key] as $k=>$v){
        if($this->primArc[$k] != 0  $v  $this->primArc[$k]){
          $this->primArc[$k] = $v;
          $this->primVexs[$k] = $key;
        }
      }
    }
    return $this->primVexs;
  }
  //一般算法,生成最小生成樹
  public function bst(){
    $this->primVexs = array($this->vexs[0]);
    $this->primArc = array();
    next($this->arc[key($this->arc)]);
    $key = NULL;
    $current = NULL;
    while(count($this->primVexs)  count($this->vexs)){
      foreach($this->primVexs as $value){
        foreach($this->arc[$value] as $k=>$v){
          if(!in_array($k, $this->primVexs)  $v != 0  $v != $this->infinity){
            if($key == NULL || $v  current($current)){
              $key = $k;
              $current = array($value . $k=>$v);
            }
          }
        }
      }
      $this->primVexs[] = $key;
      $this->primArc[key($current)] = current($current);
      $key = NULL;
      $current = NULL;
    }
    return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);
  }
  //一般遍歷
  public function reserve(){
    $this->hasList = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
      }
      foreach($value as $k=>$v){
        if($v == 1  !in_array($k, $this->hasList)){
          $this->hasList[] = $k;
        }
      }
    }
    foreach($this->vexs as $v){
      if(!in_array($v, $this->hasList))
        $this->hasList[] = $v;
    }
    return implode($this->hasList);
  }
  //廣度優先遍歷
  public function bfs(){
    $this->hasList = array();
    $this->queue = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
        $this->queue[] = $value;
        while(!empty($this->queue)){
          $child = array_shift($this->queue);
          foreach($child as $k=>$v){
            if($v == 1  !in_array($k, $this->hasList)){
              $this->hasList[] = $k;
              $this->queue[] = $this->arc[$k];
            }
          }
        }
      }
    }
    return implode($this->hasList);
  }
  //執行深度優先遍歷
  public function excuteDfs($key){
    $this->hasList[] = $key;
    foreach($this->arc[$key] as $k=>$v){
      if($v == 1  !in_array($k, $this->hasList))
        $this->excuteDfs($k);
    }
  }
  //深度優先遍歷
  public function dfs(){
    $this->hasList = array();
    foreach($this->vexs as $key){
      if(!in_array($key, $this->hasList))
        $this->excuteDfs($key);
    }
    return implode($this->hasList);
  }
  //返回圖的二維數組表示
  public function getArc(){
    return $this->arc;
  }
  //返回結點個數
  public function getVexCount(){
    return count($this->vexs);
  }
}
$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//鍵為邊,值權值
$test = new MGraph($a, $b);
print_r($test->bst());

運行結果:

Array
(
  [vexs] => Array
    (
      [0] => a
      [1] => b
      [2] => f
      [3] => i
      [4] => c
      [5] => g
      [6] => h
      [7] => e
      [8] => d
    )
  [arc] => Array
    (
      [ab] => 10
      [af] => 11
      [bi] => 12
      [ic] => 8
      [bg] => 16
      [gh] => 19
      [he] => 7
      [hd] => 16
    )
)

更多關于PHP相關內容感興趣的讀者可查看本站專題:《PHP數據結構與算法教程》、《php程序設計算法總結》、《php字符串(string)用法總結》、《PHP數組(Array)操作技巧大全》、《PHP常用遍歷算法與技巧總結》及《PHP數學運算技巧總結》

希望本文所述對大家PHP程序設計有所幫助。

您可能感興趣的文章:
  • PHP簡單實現二維數組的矩陣轉置操作示例
  • PHP使用數組實現矩陣數學運算的方法示例
  • PHP實現蛇形矩陣,回環矩陣及數字螺旋矩陣的方法分析
  • PHP 數組和字符串互相轉換實現方法
  • PHP中數組合并的兩種方法及區別介紹
  • PHP遍歷數組的方法匯總
  • PHP遍歷數組的幾種方法
  • php數組函數序列之array_keys() - 獲取數組鍵名
  • php獲取數組中重復數據的兩種方法
  • PHP實現順時針打印矩陣(螺旋矩陣)的方法示例

標簽:南寧 迪慶 定西 十堰 海南 樂山 佛山 六安

巨人網絡通訊聲明:本文標題《PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法分析》,本文關鍵詞  PHP,實現,圖,的,鄰接,矩陣,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法分析》相關的同類信息!
  • 本頁收集關于PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法分析的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 绥阳县| 汉沽区| 邳州市| 泰兴市| 巴彦淖尔市| 施甸县| 察雅县| 阳春市| 前郭尔| 昆山市| 安多县| 廊坊市| 沙雅县| 呼和浩特市| 榕江县| 贺兰县| 大邑县| 库车县| 和政县| 教育| 二连浩特市| 中方县| 安徽省| 普格县| 昭觉县| 吴旗县| 都江堰市| 当雄县| 蚌埠市| 临城县| 扬中市| 乌兰浩特市| 临颍县| 车险| 红安县| 乐山市| 神池县| 合水县| 大连市| 西昌市| 临潭县|