婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > hadoop二次排序的原理和實現方法

hadoop二次排序的原理和實現方法

熱門標簽:熱血傳奇沃瑪森林地圖標注 南召400電話辦理資費 地圖標注審核工作怎么樣注冊 福建ai電銷機器人加盟公司 去哪里辦卡 揭陽外呼系統公司 無錫電銷機器人銷售 招聘信息 地圖標注植物名稱 鄭州中國移動400電話申請

默認情況下,Map輸出的結果會對Key進行默認的排序,但是有時候需要對Key排序的同時還需要對Value進行排序,這時候就要用到二次排序了。下面我們來說說二次排序

1、二次排序原理

我們把二次排序分為以下幾個階段

Map起始階段

在Map階段,使用job.setInputFormatClass()定義的InputFormat,將輸入的數據集分割成小數據塊split,同時InputFormat提供一個RecordReader的實現。在這里我們使用的是TextInputFormat,它提供的RecordReader會將文本的行號作為Key,這一行的文本作為Value。這就是自定 Mapper的輸入是LongWritable,Text> 的原因。然后調用自定義Mapper的map方法,將一個個LongWritable,Text>鍵值對輸入給Mapper的map方法

Map最后階段

在Map階段的最后,會先調用job.setPartitionerClass()對這個Mapper的輸出結果進行分區,每個分區映射到一個Reducer。每個分區內又調用job.setSortComparatorClass()設置的Key比較函數類排序。可以看到,這本身就是一個二次排序。如果沒有通過job.setSortComparatorClass()設置 Key比較函數類,則使用Key實現的compareTo()方法

Reduce階段

在Reduce階段,reduce()方法接受所有映射到這個Reduce的map輸出后,也會調用job.setSortComparatorClass()方法設置的Key比較函數類,對所有數據進行排序。然后開始構造一個Key對應的Value迭代器。這時就要用到分組,使用 job.setGroupingComparatorClass()方法設置分組函數類。只要這個比較器比較的兩個Key相同,它們就屬于同一組,它們的 Value放在一個Value迭代器,而這個迭代器的Key使用屬于同一個組的所有Key的第一個Key。最后就是進入Reducer的 reduce()方法,reduce()方法的輸入是所有的Key和它的Value迭代器,同樣注意輸入與輸出的類型必須與自定義的Reducer中聲明的一致

接下來我們通過示例,可以很直觀的了解二次排序的原理

輸入文件 sort.txt 內容為

40 20 40 10 40 30 40 5 30 30 30 20 30 10 30 40 50 20 50 50 50 10 50 60

輸出文件的內容(從小到大排序)如下

30 10 30 20 30 30 30 40 -------- 40 5 40 10 40 20 40 30 -------- 50 10 50 20 50 50 50 60

從輸出的結果可以看出Key實現了從小到大的排序,同時相同Key的Value也實現了從小到大的排序,這就是二次排序的結果

2、二次排序的具體流程

在本例中要比較兩次。先按照第一字段排序,然后再對第一字段相同的按照第二字段排序。根據這一點,我們可以構造一個復合類IntPair ,它有兩個字段,先利用分區對第一字段排序,再利用分區內的比較對第二字段排序。二次排序的流程分為以下幾步。

在本例中要比較兩次。先按照第一字段排序,然后再對第一字段相同的按照第二字段排序。根據這一點,我們可以構造一個復合類IntPair ,它有兩個字段,先利用分區對第一字段排序,再利用分區內的比較對第二字段排序。二次排序的流程分為以下幾步。

1、自定義 key

所有自定義的key應該實現接口WritableComparable,因為它是可序列化的并且可比較的。WritableComparable 的內部方法如下所示

// 反序列化,從流中的二進制轉換成IntPair
public void readFields(DataInput in) throws IOException

// 序列化,將IntPair轉化成使用流傳送的二進制
public void write(DataOutput out)

// key的比較
public int compareTo(IntPair o)

// 默認的分區類 HashPartitioner,使用此方法
public int hashCode()

// 默認實現
public boolean equals(Object right)

2、自定義分區

自定義分區函數類FirstPartitioner,是key的第一次比較,完成對所有key的排序。

public static class FirstPartitioner extends Partitioner IntPair,IntWritable>

在job中使用setPartitionerClasss()方法設置Partitioner

job.setPartitionerClasss(FirstPartitioner.Class);

3、Key的比較類

這是Key的第二次比較,對所有的Key進行排序,即同時完成IntPair中的first和second排序。該類是一個比較器,可以通過兩種方式實現。

1) 繼承WritableComparator。

public static class KeyComparator extends WritableComparator

必須有一個構造函數,并且重載以下方法。

public int compare(WritableComparable w1, WritableComparable w2)

2) 實現接口 RawComparator。

上面兩種實現方式,在Job中,可以通過setSortComparatorClass()方法來設置Key的比較類。

job.setSortComparatorClass(KeyComparator.Class);

注意:如果沒有使用自定義的SortComparator類,則默認使用Key中compareTo()方法對Key排序。

4、定義分組類函數

在Reduce階段,構造一個與 Key 相對應的 Value 迭代器的時候,只要first相同就屬于同一個組,放在一個Value迭代器。定義這個比較器,可以有兩種方式。

1) 繼承 WritableComparator。

public static class GroupingComparator extends WritableComparator

必須有一個構造函數,并且重載以下方法。

public int compare(WritableComparable w1, WritableComparable w2)

2) 實現接口 RawComparator。

上面兩種實現方式,在 Job 中,可以通過 setGroupingComparatorClass()方法來設置分組類。

job.setGroupingComparatorClass(GroupingComparator.Class);

另外注意的是,如果reduce的輸入與輸出不是同一種類型,則 Combiner和Reducer 不能共用 Reducer 類,因為

Combiner 的輸出是 reduce 的輸入。除非重新定義一個Combiner。

3、代碼實現

Hadoop的example包中自帶了一個MapReduce的二次排序算法,下面對 example包中的二次排序進行改進

package com.buaa;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
/** 
* @ProjectName SecondarySort
* @PackageName com.buaa
* @ClassName IntPair
* @Description 將示例數據中的key/value封裝成一個整體作為Key,同時實現 WritableComparable接口并重寫其方法
* @Author 劉吉超
* @Date 2016-06-07 22:31:53
*/
public class IntPair implements WritableComparableIntPair>{
  private int first;
  private int second;
  public IntPair(){
  }
  public IntPair(int left, int right){
    set(left, right);
  }
  public void set(int left, int right){
    first = left;
    second = right;
  }
  @Override
  public void readFields(DataInput in) throws IOException{
    first = in.readInt();
    second = in.readInt();
  }
  @Override
  public void write(DataOutput out) throws IOException{
    out.writeInt(first);
    out.writeInt(second);
  }
  @Override
  public int compareTo(IntPair o)
  {
    if (first != o.first){
      return first  o.first ? -1 : 1;
    }else if (second != o.second){
      return second  o.second ? -1 : 1;
    }else{
      return 0;
    }
  }
  @Override
  public int hashCode(){
    return first * 157 + second;
  }
  @Override
  public boolean equals(Object right){
    if (right == null)
      return false;
    if (this == right)
      return true;
    if (right instanceof IntPair){
      IntPair r = (IntPair) right;
      return r.first == first  r.second == second;
    }else{
      return false;
    }
  }
  public int getFirst(){
    return first;
  }
  public int getSecond(){
    return second;
  }
}
package com.buaa;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/** 
* @ProjectName SecondarySort
* @PackageName com.buaa
* @ClassName SecondarySort
* @Description TODO
* @Author 劉吉超
* @Date 2016-06-07 22:40:37
*/
@SuppressWarnings("deprecation")
public class SecondarySort {
  public static class Map extends MapperLongWritable, Text, IntPair, IntWritable> {
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
      String line = value.toString();
      StringTokenizer tokenizer = new StringTokenizer(line);
      int left = 0;
      int right = 0;
      if (tokenizer.hasMoreTokens()) {
        left = Integer.parseInt(tokenizer.nextToken());
        if (tokenizer.hasMoreTokens())
          right = Integer.parseInt(tokenizer.nextToken());
        context.write(new IntPair(left, right), new IntWritable(right));
      }
    }
  }
  /*
   * 自定義分區函數類FirstPartitioner,根據 IntPair中的first實現分區
   */
  public static class FirstPartitioner extends PartitionerIntPair, IntWritable>{
    @Override
    public int getPartition(IntPair key, IntWritable value,int numPartitions){
      return Math.abs(key.getFirst() * 127) % numPartitions;
    }
  }
  /*
   * 自定義GroupingComparator類,實現分區內的數據分組
   */
  @SuppressWarnings("rawtypes")
  public static class GroupingComparator extends WritableComparator{
    protected GroupingComparator(){
      super(IntPair.class, true);
    }
    @Override
    public int compare(WritableComparable w1, WritableComparable w2){
      IntPair ip1 = (IntPair) w1;
      IntPair ip2 = (IntPair) w2;
      int l = ip1.getFirst();
      int r = ip2.getFirst();
      return l == r ? 0 : (l  r ? -1 : 1);
    }
  }
  public static class Reduce extends ReducerIntPair, IntWritable, Text, IntWritable> {
    public void reduce(IntPair key, IterableIntWritable> values, Context context) throws IOException, InterruptedException {
      for (IntWritable val : values) {
        context.write(new Text(Integer.toString(key.getFirst())), val);
      }
    }
  }
  public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
    // 讀取配置文件
    Configuration conf = new Configuration();
    // 判斷路徑是否存在,如果存在,則刪除  
    Path mypath = new Path(args[1]); 
    FileSystem hdfs = mypath.getFileSystem(conf); 
    if (hdfs.isDirectory(mypath)) { 
      hdfs.delete(mypath, true); 
    } 
    Job job = new Job(conf, "secondarysort");
    // 設置主類
    job.setJarByClass(SecondarySort.class);
    // 輸入路徑
    FileInputFormat.setInputPaths(job, new Path(args[0]));
    // 輸出路徑
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    // Mapper
    job.setMapperClass(Map.class);
    // Reducer
    job.setReducerClass(Reduce.class);
    // 分區函數
    job.setPartitionerClass(FirstPartitioner.class);
    // 本示例并沒有自定義SortComparator,而是使用IntPair中compareTo方法進行排序 job.setSortComparatorClass();
    // 分組函數
    job.setGroupingComparatorClass(GroupingComparator.class);
    // map輸出key類型
    job.setMapOutputKeyClass(IntPair.class);
    // map輸出value類型
    job.setMapOutputValueClass(IntWritable.class);
    // reduce輸出key類型
    job.setOutputKeyClass(Text.class);
    // reduce輸出value類型
    job.setOutputValueClass(IntWritable.class);
    // 輸入格式
    job.setInputFormatClass(TextInputFormat.class);
    // 輸出格式
    job.setOutputFormatClass(TextOutputFormat.class);
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

總結

以上所述是小編給大家介紹的hadoop二次排序的原理和實現方法,希望對大家有所幫助,如果大家有任何疑問歡迎給我留言,小編會及時回復大家的!

您可能感興趣的文章:
  • Hadoop對文本文件的快速全局排序實現方法及分析

標簽:黔南 南昌 東莞 宣城 桂林 景德鎮 文山 鹽城

巨人網絡通訊聲明:本文標題《hadoop二次排序的原理和實現方法》,本文關鍵詞  hadoop,二次,排序,的,原理,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《hadoop二次排序的原理和實現方法》相關的同類信息!
  • 本頁收集關于hadoop二次排序的原理和實現方法的相關信息資訊供網民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    **网站欧美大片在线观看| 激情五月激情综合网| 欧美激情艳妇裸体舞| 秋霞电影网一区二区| 色天天综合久久久久综合片| 极品少妇xxxx精品少妇偷拍| 91精品欧美福利在线观看| 成人av电影观看| 综合久久综合久久| 色综合久久综合网97色综合| 国产成人一区在线| 最新不卡av在线| 一区二区三区av电影| 欧洲精品视频在线观看| 亚洲成人tv网| 亚洲精品久久久久久国产精华液| 色综合视频在线观看| 日本韩国视频一区二区| 成人精品一区二区三区四区| 国产清纯在线一区二区www| 精品日韩在线一区| 狠狠色丁香婷婷综合久久片| 久久久精品免费观看| 欧美日韩高清在线播放| 六月婷婷色综合| 麻豆精品视频在线| 久久久久久久久岛国免费| 国产精品18久久久久| 欧美精品一区二区三| 成人国产电影网| 亚洲人成在线播放网站岛国 | 精品久久久久久久久久久久久久久 | 国产伦精品一区二区三区免费| 蜜桃av一区二区| 国产精品久久久久婷婷| 国产一区二区精品久久91| 亚洲成人免费影院| 欧美成人精品二区三区99精品| 精品国精品自拍自在线| 91小宝寻花一区二区三区| 亚洲超碰97人人做人人爱| 国产精品家庭影院| 日韩免费高清电影| 中文字幕乱码一区二区免费| 欧美喷潮久久久xxxxx| 日韩精品一区二区三区四区| 91福利国产精品| 丁香另类激情小说| 欧美精品一二三四| 色哟哟精品一区| 日韩欧美123| 欧美丰满少妇xxxxx高潮对白| 中文字幕精品综合| 日本一区二区视频在线| 欧美成人综合网站| 3d动漫精品啪啪1区2区免费 | 亚洲国产精品影院| 538在线一区二区精品国产| 国产亚洲成av人在线观看导航 | 一区二区三区在线观看国产| 2021久久国产精品不只是精品| 欧美国产禁国产网站cc| 日韩限制级电影在线观看| 国精产品一区一区三区mba视频 | 香蕉成人伊视频在线观看| 中文字幕不卡在线观看| 日韩免费观看2025年上映的电影| 中文字幕精品三区| 久久久国产午夜精品| 五月天欧美精品| 亚洲综合精品久久| 久久久久久一级片| 日本免费新一区视频| 亚洲国产中文字幕| 色婷婷亚洲综合| 色婷婷狠狠综合| 国产午夜精品福利| 欧美激情在线免费观看| 欧美一区二区三区视频免费播放| 欧美激情综合五月色丁香| 国产亚洲欧美色| 麻豆精品一区二区三区| 麻豆精品在线播放| 一区二区三区四区在线| 国产激情精品久久久第一区二区| 国产在线视频一区二区| 日韩欧美国产午夜精品| 精品国产一区二区三区久久影院| 亚洲欧洲成人精品av97| 久久精品国内一区二区三区| 精品在线免费视频| 欧美成人国产一区二区| 精品国产一区二区三区久久久蜜月| 亚洲电影一级片| 激情文学综合网| 国产不卡高清在线观看视频| 精品国产污污免费网站入口| 久久综合中文字幕| 蜜臂av日日欢夜夜爽一区| 国产精品123区| 99久久精品情趣| 亚洲免费观看高清| 天天影视色香欲综合网老头| 欧美电影一区二区| 精品国内二区三区| 久久综合狠狠综合久久激情| 男男视频亚洲欧美| 国产一区二区h| 久久九九影视网| 综合av第一页| 97久久精品人人澡人人爽| 欧美视频在线播放| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 97久久超碰精品国产| av高清久久久| 亚洲精品久久久蜜桃| 麻豆精品一区二区三区| 久久久久国产精品免费免费搜索| 国产精品久久久久一区二区三区共| 久久久精品日韩欧美| 亚洲成人一区二区在线观看| 国产一区二区三区免费看 | 日韩精彩视频在线观看| 国产激情一区二区三区四区 | 国产成人精品免费看| 国产精品国产三级国产aⅴ无密码| 亚洲一区二区欧美激情| 中文字幕在线一区二区三区| 91国偷自产一区二区三区成为亚洲经典| 欧美日韩成人一区二区| 国产91丝袜在线18| 久久久亚洲精华液精华液精华液 | 亚洲精品视频自拍| 国产成人午夜电影网| 亚洲国产视频在线| 播五月开心婷婷综合| 亚洲sss视频在线视频| av一区二区三区在线| 精品美女被调教视频大全网站| 成人福利视频在线看| 国产亚洲美州欧州综合国| 91一区二区三区在线观看| 久久久高清一区二区三区| 色欧美片视频在线观看在线视频| 中文字幕一区二区不卡| 国产成人精品一区二| 日韩精品91亚洲二区在线观看| 在线影院国内精品| 精品亚洲成a人在线观看| 91麻豆精品国产综合久久久久久| 青青青伊人色综合久久| 777亚洲妇女| 国产精品免费av| 欧美福利视频导航| 午夜激情一区二区| 亚洲免费av高清| 色999日韩国产欧美一区二区| 爽爽淫人综合网网站| 欧美日韩视频第一区| 香蕉成人啪国产精品视频综合网| 激情综合色综合久久| 91精品国产综合久久久久久漫画| 亚洲欧洲中文日韩久久av乱码| 成人av动漫在线| 在线观看视频一区二区欧美日韩| 国产精品久久久一区麻豆最新章节| 日韩视频一区二区三区| 国产一区91精品张津瑜| 欧美日韩一区二区电影| 在线精品观看国产| 日本va欧美va精品发布| 婷婷国产在线综合| 精品久久久久香蕉网| 日韩欧美在线综合网| 国产日产欧产精品推荐色 | 在线观看一区二区视频| 性欧美疯狂xxxxbbbb| 99久久99久久久精品齐齐| 亚洲欧洲日产国产综合网| 成人av电影观看| 国精产品一区一区三区mba视频| 精品毛片乱码1区2区3区| 久久综合色天天久久综合图片| 国内欧美视频一区二区| 日韩精品影音先锋| 国产精品99久久久久久宅男| 国产一区二区三区电影在线观看 | 国产精品久久久久三级| 国产日韩精品一区二区三区| 风流少妇一区二区| 天堂成人国产精品一区| 欧美一区二区福利在线| 国产精品久久久久四虎| 中文字幕一区二区三区不卡| 色菇凉天天综合网| 91亚洲国产成人精品一区二区三| 国产欧美日韩不卡免费| 91精品国产高清一区二区三区| 久久成人羞羞网站| 午夜伦欧美伦电影理论片|