婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > Pandas自定義選項option設置

Pandas自定義選項option設置

熱門標簽:銀川電話機器人電話 外賣地址有什么地圖標注 煙臺電話外呼營銷系統 長春極信防封電銷卡批發 企業彩鈴地圖標注 預覽式外呼系統 如何地圖標注公司 上海正規的外呼系統最新報價 電銷機器人錄音要學習什么

簡介

pandas有一個option系統可以控制pandas的展示情況,一般來說我們不需要進行修改,但是不排除特殊情況下的修改需求。本文將會詳細講解pandas中的option設置。

常用選項

pd.options.display 可以控制展示選項,比如設置最大展示行數:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

除此之外,pd還有4個相關的方法來對option進行修改:

  • get_option() / set_option() - get/set 單個option的值
  • reset_option() - 重設某個option的值到默認值
  • describe_option() - 打印某個option的值
  • option_context() - 在代碼片段中執行某些option的更改

如下所示:

In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows", 101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r", 102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102

get/set 選項

pd.get_option 和 pd.set_option 可以用來獲取和修改特定的option:

In [11]: pd.get_option("mode.sim_interactive")
Out[11]: False

In [12]: pd.set_option("mode.sim_interactive", True)

In [13]: pd.get_option("mode.sim_interactive")
Out[13]: True

使用  reset_option  來重置:

In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60

使用正則表達式可以重置多條option:

In [19]: pd.reset_option("^display")

option_context 在代碼環境中修改option,代碼結束之后,option會被還原:

In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....: 
10
5

In [21]: print(pd.get_option("display.max_rows"))
60

In [22]: print(pd.get_option("display.max_columns"))
0

經常使用的選項

下面我們看一些經常使用選項的例子:

最大展示行數

display.max_rows 和 display.max_columns 可以設置最大展示行數和列數:

In [23]: df = pd.DataFrame(np.random.randn(7, 2))

In [24]: pd.set_option("max_rows", 7)

In [25]: df
Out[25]: 
          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

In [26]: pd.set_option("max_rows", 5)

In [27]: df
Out[27]: 
           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]

超出數據展示

display.large_repr 可以選擇對于超出的行或者列的展示行為,可以是truncated frame:

In [43]: df = pd.DataFrame(np.random.randn(10, 10))

In [44]: pd.set_option("max_rows", 5)

In [45]: pd.set_option("large_repr", "truncate")

In [46]: df
Out[46]: 
           0         1         2         3         4         5         6         7         8         9
0  -0.954208  1.462696 -1.743161 -0.826591 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871
1   3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240 -2.182937  0.380396  0.084844  0.432390
..       ...       ...       ...       ...       ...       ...       ...       ...       ...       ...
8  -0.303421 -0.858447  0.306996 -0.028665  0.384316  1.574159  1.588931  0.476720  0.473424 -0.242861
9  -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693921  1.613616  0.464000  0.227371

[10 rows x 10 columns]

也可以是統計信息:

In [47]: pd.set_option("large_repr", "info")

In [48]: df
Out[48]: 
class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

最大列的寬度

display.max_colwidth 用來設置最大列的寬度。
In [51]: df = pd.DataFrame(
   ....:     np.array(
   ....:         [
   ....:             ["foo", "bar", "bim", "uncomfortably long string"],
   ....:             ["horse", "cow", "banana", "apple"],
   ....:         ]
   ....:     )
   ....: )
   ....: 

In [52]: pd.set_option("max_colwidth", 40)

In [53]: df
Out[53]: 
       0    1       2                          3
0    foo  bar     bim  uncomfortably long string
1  horse  cow  banana                      apple

In [54]: pd.set_option("max_colwidth", 6)

In [55]: df
Out[55]: 
       0    1      2      3
0    foo  bar    bim  un...
1  horse  cow  ba...  apple

顯示精度

display.precision 可以設置顯示的精度:

In [70]: df = pd.DataFrame(np.random.randn(5, 5))

In [71]: pd.set_option("precision", 7)

In [72]: df
Out[72]: 
           0          1          2          3          4
0 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.3371217
1 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.1125723
3 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.1596530
4  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197

零轉換的門檻

display.chop_threshold  可以設置將Series或者DF中數據展示為0的門檻:

In [75]: df = pd.DataFrame(np.random.randn(6, 6))

In [76]: pd.set_option("chop_threshold", 0)

In [77]: df
Out[77]: 
        0       1       2       3       4       5
0  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.6091
1 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.0875
2  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.4026
4  0.3996 -1.7660  0.8504  0.3881  0.9923  0.7441
5 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067

In [78]: pd.set_option("chop_threshold", 0.5)

In [79]: df
Out[79]: 
        0       1       2       3       4       5
0  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.6091
1  0.0000  0.6256  0.0000  0.0000  1.1039 -1.0875
2  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.0000
4  0.0000 -1.7660  0.8504  0.0000  0.9923  0.7441
5 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067

上例中,絕對值 0.5 的都會被展示為0 。

列頭的對齊方向

display.colheader_justify 可以修改列頭部文字的對齊方向:

In [81]: df = pd.DataFrame(
   ....:     np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
   ....:     columns=["A", "B", "C"],
   ....:     dtype="float",
   ....: )
   ....: 

In [82]: pd.set_option("colheader_justify", "right")

In [83]: df
Out[83]: 
        A    B    C
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [84]: pd.set_option("colheader_justify", "left")

In [85]: df
Out[85]: 
   A       B    C  
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

常見的選項表格:

選項 默認值 描述
display.chop_threshold None If set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends.
display.colheader_justify right Controls the justification of column headers. used by DataFrameFormatter.
display.column_space 12 No description available.
display.date_dayfirst False When True, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirst False When True, prints and parses dates with the year first, eg 2005/01/20
display.encoding UTF-8 Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console.
display.expand_frame_repr True Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width.
display.float_format None The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example.
display.large_repr truncate For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default), or switch to the view from df.info() (the behaviour in earlier versions of pandas). allowable settings, [‘truncate', ‘info']
display.latex.repr False Whether to produce a latex DataFrame representation for Jupyter frontends that support it.
display.latex.escape True Escapes special characters in DataFrames, when using the to_latex method.
display.latex.longtable False Specifies if the to_latex method of a DataFrame uses the longtable format.
display.latex.multicolumn True Combines columns when using a MultiIndex
display.latex.multicolumn_format ‘l' Alignment of multicolumn labels
display.latex.multirow False Combines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines.
display.max_columns 0 or 20 max_rows and max_columns are used in repr() methods to decide if to_string() or info() is used to render an object to a string. In case Python/IPython is running in a terminal this is set to 0 by default and pandas will correctly auto-detect the width of the terminal and switch to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection, in which case the default is set to 20. ‘None' value means unlimited.
display.max_colwidth 50 The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. ‘None' value means unlimited.
display.max_info_columns 100 max_info_columns is used in DataFrame.info method to decide if per column information will be printed.
display.max_info_rows 1690785 df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified.
display.max_rows 60 This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a truncated or summary repr. ‘None' value means unlimited.
display.min_rows 10 The numbers of rows to show in a truncated repr (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows.
display.max_seq_items 100 when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string. If set to None, the number of items to be printed is unlimited.
display.memory_usage True This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.
display.multi_sparse True “Sparsify” MultiIndex display (don't display repeated elements in outer levels within groups)
display.notebook_repr_html True When True, IPython notebook will use html representation for pandas objects (if it is available).
display.pprint_nest_depth 3 Controls the number of nested levels to process when pretty-printing
display.precision 6 Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to numpy's precision print option
display.show_dimensions truncate Whether to print out dimensions at the end of DataFrame repr. If ‘truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)
display.width 80 Width of the display in characters. In case Python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
display.html.table_schema False Whether to publish a Table Schema representation for frontends that support it.
display.html.border 1 A border=value attribute is inserted in the table> tag for the DataFrame HTML repr.
display.html.use_mathjax True When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol.
io.excel.xls.writer xlwt The default Excel writer engine for ‘xls' files.Deprecated since version 1.2.0: As xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas. Since this is the only engine in pandas that supports writing to .xls files, this option will also be removed.
io.excel.xlsm.writer openpyxl The default Excel writer engine for ‘xlsm' files. Available options: ‘openpyxl' (the default).
io.excel.xlsx.writer openpyxl The default Excel writer engine for ‘xlsx' files.
io.hdf.default_format None default format writing format, if None, then put will default to ‘fixed' and append will default to ‘table'
io.hdf.dropna_table True drop ALL nan rows when appending to a table
io.parquet.engine None The engine to use as a default for parquet reading and writing. If None then try ‘pyarrow' and ‘fastparquet'
mode.chained_assignment warn Controls SettingWithCopyWarning: ‘raise', ‘warn', or None. Raise an exception, warn, or no action if trying to use chained assignment.
mode.sim_interactive False Whether to simulate interactive mode for purposes of testing.
mode.use_inf_as_na False True means treat None, NaN, -INF, INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way).
compute.use_bottleneck True Use the bottleneck library to accelerate computation if it is installed.
compute.use_numexpr True Use the numexpr library to accelerate computation if it is installed.
plotting.backend matplotlib Change the plotting backend to a different backend than the current matplotlib one. Backends can be implemented as third-party libraries implementing the pandas plotting API. They can use other plotting libraries like Bokeh, Altair, etc.
plotting.matplotlib.register_converters True Register custom converters with matplotlib. Set to False to de-register.

到此這篇關于Pandas自定義選項option設置的文章就介紹到這了,更多相關Pandas option設置內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Pandas groupby apply agg 的區別 運行自定義函數說明
  • Python pandas自定義函數的使用方法示例

標簽:佳木斯 上饒 盤錦 潮州 西寧 宜昌 湖北 珠海

巨人網絡通訊聲明:本文標題《Pandas自定義選項option設置》,本文關鍵詞  Pandas,自定義,選項,option,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Pandas自定義選項option設置》相關的同類信息!
  • 本頁收集關于Pandas自定義選項option設置的相關信息資訊供網民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    成人高清视频免费观看| 99久久精品国产网站| www.成人在线| 亚洲一区二区三区四区五区中文| 欧美综合视频在线观看| 久久精品久久综合| 国产精品久久久久影院| 91精品久久久久久蜜臀| 捆绑调教美女网站视频一区| 国产网站一区二区| 国产精品剧情在线亚洲| 亚洲视频免费观看| 亚洲综合色噜噜狠狠| 日韩和欧美的一区| 久久精品99久久久| 国产精品99精品久久免费| 国产sm精品调教视频网站| 成人av资源下载| 欧美专区亚洲专区| 精品欧美一区二区久久| 中日韩av电影| 一区二区三区精品在线观看| 99视频精品全部免费在线| 成人小视频免费观看| 欧美伊人久久久久久久久影院| 在线观看91视频| 欧美激情综合网| 国产精品资源网站| 欧美一级黄色大片| 亚洲精品高清视频在线观看| 国产丶欧美丶日本不卡视频| 欧美一区中文字幕| 天天影视涩香欲综合网| 不卡av在线免费观看| 久久美女高清视频| 久久99精品国产.久久久久久| 色综合天天综合网天天狠天天| 日韩欧美aaaaaa| 免费在线观看不卡| 在线观看一区二区精品视频| 亚洲天堂av老司机| 色综合天天在线| 亚洲人吸女人奶水| 91成人国产精品| 日韩成人一级片| 欧美成人三级电影在线| 国产一区二区福利| 国产欧美视频在线观看| a在线播放不卡| 石原莉奈在线亚洲二区| 欧美一级精品在线| 国内精品视频666| 国产精品妹子av| 欧美美女直播网站| 精品一区中文字幕| 国产成人午夜精品5599| 久久婷婷一区二区三区| 99精品视频在线播放观看| 婷婷六月综合网| 欧美激情一区在线观看| 欧美视频自拍偷拍| 国产乱一区二区| 亚洲v精品v日韩v欧美v专区| 欧美一级日韩一级| 成人免费视频一区二区| 亚洲自拍偷拍欧美| 国产日韩av一区| 欧美成人a视频| 91免费版在线看| 国产成人精品影院| 麻豆精品一二三| 亚洲视频在线一区二区| 国产午夜精品福利| 日韩一区二区三区在线| 91蜜桃网址入口| 成人黄色电影在线 | 精品理论电影在线观看| 91啪亚洲精品| 91在线视频播放| 成人av资源站| 国产成人在线免费观看| 国产美女av一区二区三区| 免费在线观看视频一区| 免费高清在线一区| 视频一区视频二区中文| 亚洲激情中文1区| 亚洲成人精品在线观看| 亚洲电影你懂得| 午夜av区久久| 成人网在线免费视频| 国产一区二三区| 大桥未久av一区二区三区中文| 极品美女销魂一区二区三区| 奇米色一区二区| 久久99国产精品久久| 国产99久久久精品| 91影院在线观看| 欧美少妇xxx| 日韩欧美在线一区二区三区| 日韩一区二区三区视频| 久久久久一区二区三区四区| 国产精品入口麻豆原神| 亚洲男女一区二区三区| 日本怡春院一区二区| 国产一区二区三区综合| 91在线免费播放| 日韩欧美国产一区二区三区 | jiyouzz国产精品久久| 欧美色中文字幕| 久久精品人人做人人综合| 亚洲一区二区成人在线观看| 国内精品写真在线观看 | 欧美日产国产精品| 中文字幕高清一区| 麻豆极品一区二区三区| 99精品视频在线免费观看| 欧美日韩成人综合| 中文字幕av一区二区三区高| 日本免费新一区视频| 欧美日韩在线综合| 亚洲精品老司机| 91麻豆免费看片| 亚洲欧美一区二区不卡| 99在线精品视频| 性感美女久久精品| 欧美午夜在线观看| 国产欧美精品一区二区色综合朱莉| 美女视频第一区二区三区免费观看网站 | 精品在线免费视频| 精品福利av导航| 青青青伊人色综合久久| 欧美一级二级在线观看| 亚洲一级电影视频| 欧美日韩高清不卡| 狠狠色丁香久久婷婷综合丁香| 欧美一区二区三区视频在线| 日本不卡一二三| 久久精品亚洲麻豆av一区二区| 国产一区二区日韩精品| 国产精品乱码久久久久久| 色婷婷激情综合| 国内精品国产成人国产三级粉色| 亚洲国产精品av| 欧美三级中文字| 丁香婷婷综合网| 午夜欧美视频在线观看| 久久久久高清精品| 精品视频资源站| 91女人视频在线观看| 久久国产精品区| 亚洲成va人在线观看| 日韩欧美色综合| 欧美伊人久久大香线蕉综合69 | 国产一区二区三区日韩| 一区二区国产盗摄色噜噜| 2014亚洲片线观看视频免费| 久久99精品久久久久| 亚洲第一福利视频在线| 国产精品亲子乱子伦xxxx裸| 欧美男人的天堂一二区| 色综合久久久久久久久久久| 欧美性受xxxx| 在线看日韩精品电影| 一本一本大道香蕉久在线精品| 久久99精品久久只有精品| 免费不卡在线观看| 另类专区欧美蜜桃臀第一页| 日韩av午夜在线观看| 亚洲高清久久久| 亚洲制服丝袜在线| 一区二区三区四区乱视频| 中文字幕一区二区三区不卡在线| 色婷婷香蕉在线一区二区| 色婷婷久久一区二区三区麻豆| 99久久婷婷国产综合精品电影| 成人av影院在线| 91视频一区二区三区| 欧美日本在线观看| 日韩欧美第一区| 国产精品激情偷乱一区二区∴| 中文字幕中文字幕在线一区| 综合网在线视频| 蜜臀av亚洲一区中文字幕| 国产精品456露脸| 欧美三级中文字幕在线观看| 精品少妇一区二区三区视频免付费| 26uuu精品一区二区三区四区在线| 国产亚洲精品中文字幕| 亚洲免费观看视频| 九九国产精品视频| 一本一道波多野结衣一区二区| 日韩一区二区三区四区| 中文字幕一区二区不卡| 国产成人在线色| 91精品国产高清一区二区三区| 国产精品网曝门| 国内精品久久久久影院薰衣草| 欧美精品日韩一区| 日韩理论片网站| 99久久免费视频.com|