婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > Pandas自定義選項option設置

Pandas自定義選項option設置

熱門標簽:銀川電話機器人電話 外賣地址有什么地圖標注 煙臺電話外呼營銷系統 長春極信防封電銷卡批發 企業彩鈴地圖標注 預覽式外呼系統 如何地圖標注公司 上海正規的外呼系統最新報價 電銷機器人錄音要學習什么

簡介

pandas有一個option系統可以控制pandas的展示情況,一般來說我們不需要進行修改,但是不排除特殊情況下的修改需求。本文將會詳細講解pandas中的option設置。

常用選項

pd.options.display 可以控制展示選項,比如設置最大展示行數:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

除此之外,pd還有4個相關的方法來對option進行修改:

  • get_option() / set_option() - get/set 單個option的值
  • reset_option() - 重設某個option的值到默認值
  • describe_option() - 打印某個option的值
  • option_context() - 在代碼片段中執行某些option的更改

如下所示:

In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows", 101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r", 102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102

get/set 選項

pd.get_option 和 pd.set_option 可以用來獲取和修改特定的option:

In [11]: pd.get_option("mode.sim_interactive")
Out[11]: False

In [12]: pd.set_option("mode.sim_interactive", True)

In [13]: pd.get_option("mode.sim_interactive")
Out[13]: True

使用  reset_option  來重置:

In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60

使用正則表達式可以重置多條option:

In [19]: pd.reset_option("^display")

option_context 在代碼環境中修改option,代碼結束之后,option會被還原:

In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....: 
10
5

In [21]: print(pd.get_option("display.max_rows"))
60

In [22]: print(pd.get_option("display.max_columns"))
0

經常使用的選項

下面我們看一些經常使用選項的例子:

最大展示行數

display.max_rows 和 display.max_columns 可以設置最大展示行數和列數:

In [23]: df = pd.DataFrame(np.random.randn(7, 2))

In [24]: pd.set_option("max_rows", 7)

In [25]: df
Out[25]: 
          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

In [26]: pd.set_option("max_rows", 5)

In [27]: df
Out[27]: 
           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]

超出數據展示

display.large_repr 可以選擇對于超出的行或者列的展示行為,可以是truncated frame:

In [43]: df = pd.DataFrame(np.random.randn(10, 10))

In [44]: pd.set_option("max_rows", 5)

In [45]: pd.set_option("large_repr", "truncate")

In [46]: df
Out[46]: 
           0         1         2         3         4         5         6         7         8         9
0  -0.954208  1.462696 -1.743161 -0.826591 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871
1   3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240 -2.182937  0.380396  0.084844  0.432390
..       ...       ...       ...       ...       ...       ...       ...       ...       ...       ...
8  -0.303421 -0.858447  0.306996 -0.028665  0.384316  1.574159  1.588931  0.476720  0.473424 -0.242861
9  -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693921  1.613616  0.464000  0.227371

[10 rows x 10 columns]

也可以是統計信息:

In [47]: pd.set_option("large_repr", "info")

In [48]: df
Out[48]: 
class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

最大列的寬度

display.max_colwidth 用來設置最大列的寬度。
In [51]: df = pd.DataFrame(
   ....:     np.array(
   ....:         [
   ....:             ["foo", "bar", "bim", "uncomfortably long string"],
   ....:             ["horse", "cow", "banana", "apple"],
   ....:         ]
   ....:     )
   ....: )
   ....: 

In [52]: pd.set_option("max_colwidth", 40)

In [53]: df
Out[53]: 
       0    1       2                          3
0    foo  bar     bim  uncomfortably long string
1  horse  cow  banana                      apple

In [54]: pd.set_option("max_colwidth", 6)

In [55]: df
Out[55]: 
       0    1      2      3
0    foo  bar    bim  un...
1  horse  cow  ba...  apple

顯示精度

display.precision 可以設置顯示的精度:

In [70]: df = pd.DataFrame(np.random.randn(5, 5))

In [71]: pd.set_option("precision", 7)

In [72]: df
Out[72]: 
           0          1          2          3          4
0 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.3371217
1 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.1125723
3 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.1596530
4  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197

零轉換的門檻

display.chop_threshold  可以設置將Series或者DF中數據展示為0的門檻:

In [75]: df = pd.DataFrame(np.random.randn(6, 6))

In [76]: pd.set_option("chop_threshold", 0)

In [77]: df
Out[77]: 
        0       1       2       3       4       5
0  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.6091
1 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.0875
2  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.4026
4  0.3996 -1.7660  0.8504  0.3881  0.9923  0.7441
5 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067

In [78]: pd.set_option("chop_threshold", 0.5)

In [79]: df
Out[79]: 
        0       1       2       3       4       5
0  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.6091
1  0.0000  0.6256  0.0000  0.0000  1.1039 -1.0875
2  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.0000
4  0.0000 -1.7660  0.8504  0.0000  0.9923  0.7441
5 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067

上例中,絕對值 0.5 的都會被展示為0 。

列頭的對齊方向

display.colheader_justify 可以修改列頭部文字的對齊方向:

In [81]: df = pd.DataFrame(
   ....:     np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
   ....:     columns=["A", "B", "C"],
   ....:     dtype="float",
   ....: )
   ....: 

In [82]: pd.set_option("colheader_justify", "right")

In [83]: df
Out[83]: 
        A    B    C
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [84]: pd.set_option("colheader_justify", "left")

In [85]: df
Out[85]: 
   A       B    C  
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

常見的選項表格:

選項 默認值 描述
display.chop_threshold None If set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends.
display.colheader_justify right Controls the justification of column headers. used by DataFrameFormatter.
display.column_space 12 No description available.
display.date_dayfirst False When True, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirst False When True, prints and parses dates with the year first, eg 2005/01/20
display.encoding UTF-8 Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console.
display.expand_frame_repr True Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width.
display.float_format None The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example.
display.large_repr truncate For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default), or switch to the view from df.info() (the behaviour in earlier versions of pandas). allowable settings, [‘truncate', ‘info']
display.latex.repr False Whether to produce a latex DataFrame representation for Jupyter frontends that support it.
display.latex.escape True Escapes special characters in DataFrames, when using the to_latex method.
display.latex.longtable False Specifies if the to_latex method of a DataFrame uses the longtable format.
display.latex.multicolumn True Combines columns when using a MultiIndex
display.latex.multicolumn_format ‘l' Alignment of multicolumn labels
display.latex.multirow False Combines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines.
display.max_columns 0 or 20 max_rows and max_columns are used in repr() methods to decide if to_string() or info() is used to render an object to a string. In case Python/IPython is running in a terminal this is set to 0 by default and pandas will correctly auto-detect the width of the terminal and switch to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection, in which case the default is set to 20. ‘None' value means unlimited.
display.max_colwidth 50 The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. ‘None' value means unlimited.
display.max_info_columns 100 max_info_columns is used in DataFrame.info method to decide if per column information will be printed.
display.max_info_rows 1690785 df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified.
display.max_rows 60 This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a truncated or summary repr. ‘None' value means unlimited.
display.min_rows 10 The numbers of rows to show in a truncated repr (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows.
display.max_seq_items 100 when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string. If set to None, the number of items to be printed is unlimited.
display.memory_usage True This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.
display.multi_sparse True “Sparsify” MultiIndex display (don't display repeated elements in outer levels within groups)
display.notebook_repr_html True When True, IPython notebook will use html representation for pandas objects (if it is available).
display.pprint_nest_depth 3 Controls the number of nested levels to process when pretty-printing
display.precision 6 Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to numpy's precision print option
display.show_dimensions truncate Whether to print out dimensions at the end of DataFrame repr. If ‘truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)
display.width 80 Width of the display in characters. In case Python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
display.html.table_schema False Whether to publish a Table Schema representation for frontends that support it.
display.html.border 1 A border=value attribute is inserted in the table> tag for the DataFrame HTML repr.
display.html.use_mathjax True When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol.
io.excel.xls.writer xlwt The default Excel writer engine for ‘xls' files.Deprecated since version 1.2.0: As xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas. Since this is the only engine in pandas that supports writing to .xls files, this option will also be removed.
io.excel.xlsm.writer openpyxl The default Excel writer engine for ‘xlsm' files. Available options: ‘openpyxl' (the default).
io.excel.xlsx.writer openpyxl The default Excel writer engine for ‘xlsx' files.
io.hdf.default_format None default format writing format, if None, then put will default to ‘fixed' and append will default to ‘table'
io.hdf.dropna_table True drop ALL nan rows when appending to a table
io.parquet.engine None The engine to use as a default for parquet reading and writing. If None then try ‘pyarrow' and ‘fastparquet'
mode.chained_assignment warn Controls SettingWithCopyWarning: ‘raise', ‘warn', or None. Raise an exception, warn, or no action if trying to use chained assignment.
mode.sim_interactive False Whether to simulate interactive mode for purposes of testing.
mode.use_inf_as_na False True means treat None, NaN, -INF, INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way).
compute.use_bottleneck True Use the bottleneck library to accelerate computation if it is installed.
compute.use_numexpr True Use the numexpr library to accelerate computation if it is installed.
plotting.backend matplotlib Change the plotting backend to a different backend than the current matplotlib one. Backends can be implemented as third-party libraries implementing the pandas plotting API. They can use other plotting libraries like Bokeh, Altair, etc.
plotting.matplotlib.register_converters True Register custom converters with matplotlib. Set to False to de-register.

到此這篇關于Pandas自定義選項option設置的文章就介紹到這了,更多相關Pandas option設置內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Pandas groupby apply agg 的區別 運行自定義函數說明
  • Python pandas自定義函數的使用方法示例

標簽:佳木斯 上饒 盤錦 潮州 西寧 宜昌 湖北 珠海

巨人網絡通訊聲明:本文標題《Pandas自定義選項option設置》,本文關鍵詞  Pandas,自定義,選項,option,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Pandas自定義選項option設置》相關的同類信息!
  • 本頁收集關于Pandas自定義選項option設置的相關信息資訊供網民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    激情文学综合插| 久久综合给合久久狠狠狠97色69| 成人午夜激情在线| 69堂成人精品免费视频| 综合激情成人伊人| 狠狠色丁香久久婷婷综合_中| 在线精品视频免费观看| 久久精品欧美一区二区三区不卡| 日本成人在线视频网站| 91精品国产91热久久久做人人| 国产精品不卡视频| 成人免费观看男女羞羞视频| 久久久国产精品麻豆| 欧美r级在线观看| 3d动漫精品啪啪| 日韩精品色哟哟| 亚洲自拍与偷拍| 亚洲午夜日本在线观看| 在线观看亚洲a| 成人免费在线观看入口| 成人性生交大片免费看中文网站| www.av精品| 精品久久久久久久久久久久包黑料 | 亚洲精品免费一二三区| 久久麻豆一区二区| 亚洲妇女屁股眼交7| 不卡免费追剧大全电视剧网站| 亚洲精品在线一区二区| 亚洲成在人线在线播放| 91视频xxxx| 国产精品第一页第二页第三页| 精品一区二区影视| 中国av一区二区三区| 国产凹凸在线观看一区二区| 国产亚洲精品中文字幕| 国产精品一区免费在线观看| 久久亚洲综合色一区二区三区| 国产资源在线一区| 日韩毛片在线免费观看| 制服丝袜亚洲色图| 国产欧美日韩在线| 中文文精品字幕一区二区| 在线观看91精品国产入口| 国产一区二区导航在线播放| 视频一区视频二区中文| 伊人婷婷欧美激情| 国产精品九色蝌蚪自拍| 欧美乱熟臀69xxxxxx| 色狠狠一区二区三区香蕉| 久久综合综合久久综合| 亚洲国产精品欧美一二99| 国产精品色噜噜| 欧美日韩成人综合在线一区二区| 国产成人鲁色资源国产91色综 | 日本aⅴ免费视频一区二区三区 | 国产精品1024| 美国精品在线观看| 久久精品日产第一区二区三区高清版| 欧美美女直播网站| 欧美肥大bbwbbw高潮| 欧美精品三级在线观看| 91精品福利在线| 91国偷自产一区二区开放时间| av成人老司机| 中文字幕一区二区三区不卡| 国产精品视频麻豆| 中文字幕制服丝袜一区二区三区 | 欧美性猛交xxxx黑人交| 欧美三级三级三级爽爽爽| 911国产精品| 国产精品家庭影院| 日本美女一区二区| 亚洲卡通欧美制服中文| 手机精品视频在线观看| 国产成人精品亚洲午夜麻豆| 色综合久久久久综合体| 国内外精品视频| 欧美影院一区二区三区| 欧美一二三四区在线| 国产精品婷婷午夜在线观看| 午夜精品久久久久久| 国产不卡在线视频| 91精品综合久久久久久| 亚洲欧美色一区| 国产99久久久久| www.av精品| 欧美激情一区二区三区蜜桃视频| 亚洲主播在线播放| 欧美影视一区在线| 日韩欧美一级二级| 亚洲国产一区二区三区| 一本久道中文字幕精品亚洲嫩| 久久久久久久久久久久久夜| 无吗不卡中文字幕| 国产69精品久久777的优势| 久久久久久夜精品精品免费| 日韩成人精品在线| 日韩欧美色电影| 九九久久精品视频| 欧美三级韩国三级日本一级| 亚洲欧洲性图库| 欧美日韩高清一区二区不卡| 天天爽夜夜爽夜夜爽精品视频| 欧美午夜理伦三级在线观看| 午夜av一区二区三区| 日韩欧美色综合| 午夜国产不卡在线观看视频| 欧美电影一区二区三区| 国产乱码精品一区二区三区忘忧草| 中文字幕一区二区在线播放| 成人av在线资源| 日韩三级中文字幕| 91精品久久久久久久99蜜桃| 国产在线观看免费一区| 精品一二三四区| 国产成人在线视频播放| 亚洲精品国产高清久久伦理二区| 69堂国产成人免费视频| 色先锋久久av资源部| 免费在线观看一区| 国产精品不卡一区二区三区| 欧美最猛黑人xxxxx猛交| 麻豆成人免费电影| 国产午夜亚洲精品理论片色戒| 99九九99九九九视频精品| 久久国产乱子精品免费女| 亚洲午夜久久久久久久久电影网 | 日韩成人免费电影| 欧美高清在线精品一区| 日韩精品在线一区| 欧美成人bangbros| 欧美一区二区三区精品| 欧美系列亚洲系列| 色狠狠综合天天综合综合| 国产在线不卡一区| 成人爽a毛片一区二区免费| 91成人免费电影| 精品国产区一区| 亚洲国产精品久久一线不卡| 国产成人精品免费网站| 精品久久久久久最新网址| 亚洲精品日日夜夜| 成人av资源下载| 国产精品免费久久久久| 毛片不卡一区二区| 欧美zozozo| 国产精品69久久久久水密桃| 久久久国际精品| 91香蕉国产在线观看软件| 亚洲图片欧美综合| 26uuu久久综合| 91国偷自产一区二区三区成为亚洲经典| 亚洲视频一区在线| 欧美日韩一区二区在线观看| 欧美精品一区二区久久婷婷| 亚洲va国产天堂va久久en| 欧美专区在线观看一区| 亚洲综合一区在线| 欧美一区二区视频在线观看2022| 亚洲青青青在线视频| 91视频一区二区| 免费亚洲电影在线| 欧美www视频| 一本色道**综合亚洲精品蜜桃冫| 亚洲欧美偷拍三级| 在线视频一区二区免费| 亚洲国产你懂的| 欧美大片在线观看| 成a人片国产精品| 日本中文字幕不卡| 久久久久99精品一区| 欧美亚洲国产bt| 国产精品 日产精品 欧美精品| 中文字幕亚洲欧美在线不卡| 91.麻豆视频| 色哟哟一区二区三区| 日韩有码一区二区三区| 国产色一区二区| 精品成人免费观看| 欧美色图第一页| 成人app下载| 国产风韵犹存在线视精品| 久久99精品久久只有精品| 一区二区成人在线| 亚洲自拍偷拍网站| 一级日本不卡的影视| 亚洲视频在线一区二区| 欧美激情一区不卡| 国产亚洲综合色| 国产亚洲欧美日韩在线一区| 日韩精品一区二区三区视频播放| 7777精品伊人久久久大香线蕉超级流畅 | 日韩精品中文字幕一区二区三区| 99久久er热在这里只有精品66| 激情图区综合网| 国产在线精品一区二区三区不卡| 老司机精品视频在线| 日韩中文字幕麻豆| 狠狠v欧美v日韩v亚洲ⅴ| 国产美女在线精品|