婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁(yè) > 知識(shí)庫(kù) > 手把手教你實(shí)現(xiàn)PyTorch的MNIST數(shù)據(jù)集

手把手教你實(shí)現(xiàn)PyTorch的MNIST數(shù)據(jù)集

熱門標(biāo)簽:銀川電話機(jī)器人電話 長(zhǎng)春極信防封電銷卡批發(fā) 企業(yè)彩鈴地圖標(biāo)注 如何地圖標(biāo)注公司 上海正規(guī)的外呼系統(tǒng)最新報(bào)價(jià) 煙臺(tái)電話外呼營(yíng)銷系統(tǒng) 外賣地址有什么地圖標(biāo)注 電銷機(jī)器人錄音要學(xué)習(xí)什么 預(yù)覽式外呼系統(tǒng)

概述

MNIST 包含 0~9 的手寫數(shù)字, 共有 60000 個(gè)訓(xùn)練集和 10000 個(gè)測(cè)試集. 數(shù)據(jù)的格式為單通道 28*28 的灰度圖.

獲取數(shù)據(jù)

def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測(cè)試集
    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,
                                       transform=torchvision.transforms.Compose([
                                           torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                       ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測(cè)試集

    # 獲取測(cè)試集
    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,
                                      transform=torchvision.transforms.Compose([
                                          torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                      ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓(xùn)練

    # 返回分割好的訓(xùn)練集和測(cè)試集
    return train_loader, test_loader

網(wǎng)絡(luò)模型

class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        # 卷積層
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))

        # Dropout層
        self.dropout1 = torch.nn.Dropout(0.25)
        self.dropout2 = torch.nn.Dropout(0.5)

        # 全連接層
        self.fc1 = torch.nn.Linear(9216, 128)
        self.fc2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        """前向傳播"""
        
        # [b, 1, 28, 28] => [b, 32, 26, 26]
        out = self.conv1(x)
        out = F.relu(out)
        
        # [b, 32, 26, 26] => [b, 64, 24, 24]
        out = self.conv2(out)
        out = F.relu(out)

        # [b, 64, 24, 24] => [b, 64, 12, 12]
        out = F.max_pool2d(out, 2)
        out = self.dropout1(out)
        
        # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]
        out = torch.flatten(out, 1)
        
        # [b, 9216] => [b, 128]
        out = self.fc1(out)
        out = F.relu(out)

        # [b, 128] => [b, 10]
        out = self.dropout2(out)
        out = self.fc2(out)

        output = F.log_softmax(out, dim=1)

        return output

train 函數(shù)

def train(model, epoch, train_loader):
    """訓(xùn)練"""

    # 訓(xùn)練模式
    model.train()

    # 迭代
    for step, (x, y) in enumerate(train_loader):
        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 梯度清零
        optimizer.zero_grad()

        output = model(x)

        # 計(jì)算損失
        loss = F.nll_loss(output, y)

        # 反向傳播
        loss.backward()

        # 更新梯度
        optimizer.step()

        # 打印損失
        if step % 50 == 0:
            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))

test 函數(shù)

def test(model, test_loader):
    """測(cè)試"""
    
    # 測(cè)試模式
    model.eval()

    # 存放正確個(gè)數(shù)
    correct = 0

    with torch.no_grad():
        for x, y in test_loader:

            # 加速
            if use_cuda:
                model = model.cuda()
                x, y = x.cuda(), y.cuda()

            # 獲取結(jié)果
            output = model(x)

            # 預(yù)測(cè)結(jié)果
            pred = output.argmax(dim=1, keepdim=True)

            # 計(jì)算準(zhǔn)確個(gè)數(shù)
            correct += pred.eq(y.view_as(pred)).sum().item()

    # 計(jì)算準(zhǔn)確率
    accuracy = correct / len(test_loader.dataset) * 100

    # 輸出準(zhǔn)確
    print("Test Accuracy: {}%".format(accuracy))

main 函數(shù)

def main():
    # 獲取數(shù)據(jù)
    train_loader, test_loader = get_data()
    
    # 迭代
    for epoch in range(iteration_num):
        print("\n================ epoch: {} ================".format(epoch))
        train(network, epoch, train_loader)
        test(network, test_loader)

完整代碼:

import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()

        # 卷積層
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))

        # Dropout層
        self.dropout1 = torch.nn.Dropout(0.25)
        self.dropout2 = torch.nn.Dropout(0.5)

        # 全連接層
        self.fc1 = torch.nn.Linear(9216, 128)
        self.fc2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        """前向傳播"""
        
        # [b, 1, 28, 28] => [b, 32, 26, 26]
        out = self.conv1(x)
        out = F.relu(out)
        
        # [b, 32, 26, 26] => [b, 64, 24, 24]
        out = self.conv2(out)
        out = F.relu(out)

        # [b, 64, 24, 24] => [b, 64, 12, 12]
        out = F.max_pool2d(out, 2)
        out = self.dropout1(out)
        
        # [b, 64, 12, 12] => [b, 64 * 12 * 12] => [b, 9216]
        out = torch.flatten(out, 1)
        
        # [b, 9216] => [b, 128]
        out = self.fc1(out)
        out = F.relu(out)

        # [b, 128] => [b, 10]
        out = self.dropout2(out)
        out = self.fc2(out)

        output = F.log_softmax(out, dim=1)

        return output


# 定義超參數(shù)
batch_size = 64  # 一次訓(xùn)練的樣本數(shù)目
learning_rate = 0.0001  # 學(xué)習(xí)率
iteration_num = 5  # 迭代次數(shù)
network = Model()  # 實(shí)例化網(wǎng)絡(luò)
print(network)  # 調(diào)試輸出網(wǎng)絡(luò)結(jié)構(gòu)
optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate)  # 優(yōu)化器

# GPU 加速
use_cuda = torch.cuda.is_available()
print("是否使用 GPU 加速:", use_cuda)


def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測(cè)試集
    train = torchvision.datasets.MNIST(root="./data", train=True, download=True,
                                       transform=torchvision.transforms.Compose([
                                           torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                           torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                       ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測(cè)試集

    # 獲取測(cè)試集
    test = torchvision.datasets.MNIST(root="./data", train=False, download=True,
                                      transform=torchvision.transforms.Compose([
                                          torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                          torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                      ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓(xùn)練

    # 返回分割好的訓(xùn)練集和測(cè)試集
    return train_loader, test_loader


def train(model, epoch, train_loader):
    """訓(xùn)練"""

    # 訓(xùn)練模式
    model.train()

    # 迭代
    for step, (x, y) in enumerate(train_loader):
        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 梯度清零
        optimizer.zero_grad()

        output = model(x)

        # 計(jì)算損失
        loss = F.nll_loss(output, y)

        # 反向傳播
        loss.backward()

        # 更新梯度
        optimizer.step()

        # 打印損失
        if step % 50 == 0:
            print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))


def test(model, test_loader):
    """測(cè)試"""

    # 測(cè)試模式
    model.eval()

    # 存放正確個(gè)數(shù)
    correct = 0

    with torch.no_grad():
        for x, y in test_loader:

            # 加速
            if use_cuda:
                model = model.cuda()
                x, y = x.cuda(), y.cuda()

            # 獲取結(jié)果
            output = model(x)

            # 預(yù)測(cè)結(jié)果
            pred = output.argmax(dim=1, keepdim=True)

            # 計(jì)算準(zhǔn)確個(gè)數(shù)
            correct += pred.eq(y.view_as(pred)).sum().item()

    # 計(jì)算準(zhǔn)確率
    accuracy = correct / len(test_loader.dataset) * 100

    # 輸出準(zhǔn)確
    print("Test Accuracy: {}%".format(accuracy))


def main():
    # 獲取數(shù)據(jù)
    train_loader, test_loader = get_data()

    # 迭代
    for epoch in range(iteration_num):
        print("\n================ epoch: {} ================".format(epoch))
        train(network, epoch, train_loader)
        test(network, test_loader)

if __name__ == "__main__":
    main()

輸出結(jié)果:

Model(
  (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in_features=9216, out_features=128, bias=True)
  (fc2): Linear(in_features=128, out_features=10, bias=True)
)
是否使用 GPU 加速: True

================ epoch: 0 ================
Epoch: 0, Step 0, Loss: 2.3131277561187744
Epoch: 0, Step 50, Loss: 1.0419045686721802
Epoch: 0, Step 100, Loss: 0.6259541511535645
Epoch: 0, Step 150, Loss: 0.7194482684135437
Epoch: 0, Step 200, Loss: 0.4020516574382782
Epoch: 0, Step 250, Loss: 0.6890509128570557
Epoch: 0, Step 300, Loss: 0.28660136461257935
Epoch: 0, Step 350, Loss: 0.3277580738067627
Epoch: 0, Step 400, Loss: 0.2750288248062134
Epoch: 0, Step 450, Loss: 0.28428223729133606
Epoch: 0, Step 500, Loss: 0.3514065444469452
Epoch: 0, Step 550, Loss: 0.23386947810649872
Epoch: 0, Step 600, Loss: 0.25338059663772583
Epoch: 0, Step 650, Loss: 0.1743898093700409
Epoch: 0, Step 700, Loss: 0.35752204060554504
Epoch: 0, Step 750, Loss: 0.17575909197330475
Epoch: 0, Step 800, Loss: 0.20604261755943298
Epoch: 0, Step 850, Loss: 0.17389622330665588
Epoch: 0, Step 900, Loss: 0.3188241124153137
Test Accuracy: 96.56%

================ epoch: 1 ================
Epoch: 1, Step 0, Loss: 0.23558208346366882
Epoch: 1, Step 50, Loss: 0.13511177897453308
Epoch: 1, Step 100, Loss: 0.18823786079883575
Epoch: 1, Step 150, Loss: 0.2644936144351959
Epoch: 1, Step 200, Loss: 0.145077645778656
Epoch: 1, Step 250, Loss: 0.30574971437454224
Epoch: 1, Step 300, Loss: 0.2386859953403473
Epoch: 1, Step 350, Loss: 0.08346735686063766
Epoch: 1, Step 400, Loss: 0.10480977594852448
Epoch: 1, Step 450, Loss: 0.07280707359313965
Epoch: 1, Step 500, Loss: 0.20928426086902618
Epoch: 1, Step 550, Loss: 0.20455852150917053
Epoch: 1, Step 600, Loss: 0.10085935145616531
Epoch: 1, Step 650, Loss: 0.13476189970970154
Epoch: 1, Step 700, Loss: 0.19087043404579163
Epoch: 1, Step 750, Loss: 0.0981522724032402
Epoch: 1, Step 800, Loss: 0.1961515098810196
Epoch: 1, Step 850, Loss: 0.041140712797641754
Epoch: 1, Step 900, Loss: 0.250461220741272
Test Accuracy: 98.03%

================ epoch: 2 ================
Epoch: 2, Step 0, Loss: 0.09572553634643555
Epoch: 2, Step 50, Loss: 0.10370486229658127
Epoch: 2, Step 100, Loss: 0.17737184464931488
Epoch: 2, Step 150, Loss: 0.1570713371038437
Epoch: 2, Step 200, Loss: 0.07462178170681
Epoch: 2, Step 250, Loss: 0.18744900822639465
Epoch: 2, Step 300, Loss: 0.09910508990287781
Epoch: 2, Step 350, Loss: 0.08929706364870071
Epoch: 2, Step 400, Loss: 0.07703761011362076
Epoch: 2, Step 450, Loss: 0.10133732110261917
Epoch: 2, Step 500, Loss: 0.1314031481742859
Epoch: 2, Step 550, Loss: 0.10394387692213058
Epoch: 2, Step 600, Loss: 0.11612939089536667
Epoch: 2, Step 650, Loss: 0.17494803667068481
Epoch: 2, Step 700, Loss: 0.11065669357776642
Epoch: 2, Step 750, Loss: 0.061209067702293396
Epoch: 2, Step 800, Loss: 0.14715790748596191
Epoch: 2, Step 850, Loss: 0.03930797800421715
Epoch: 2, Step 900, Loss: 0.18030673265457153
Test Accuracy: 98.46000000000001%

================ epoch: 3 ================
Epoch: 3, Step 0, Loss: 0.09266342222690582
Epoch: 3, Step 50, Loss: 0.0414913073182106
Epoch: 3, Step 100, Loss: 0.2152961939573288
Epoch: 3, Step 150, Loss: 0.12287424504756927
Epoch: 3, Step 200, Loss: 0.13468700647354126
Epoch: 3, Step 250, Loss: 0.11967387050390244
Epoch: 3, Step 300, Loss: 0.11301510035991669
Epoch: 3, Step 350, Loss: 0.037447575479745865
Epoch: 3, Step 400, Loss: 0.04699449613690376
Epoch: 3, Step 450, Loss: 0.05472381412982941
Epoch: 3, Step 500, Loss: 0.09839300811290741
Epoch: 3, Step 550, Loss: 0.07964356243610382
Epoch: 3, Step 600, Loss: 0.08182843774557114
Epoch: 3, Step 650, Loss: 0.05514759197831154
Epoch: 3, Step 700, Loss: 0.13785190880298615
Epoch: 3, Step 750, Loss: 0.062480345368385315
Epoch: 3, Step 800, Loss: 0.120387002825737
Epoch: 3, Step 850, Loss: 0.04458726942539215
Epoch: 3, Step 900, Loss: 0.17119190096855164
Test Accuracy: 98.55000000000001%

================ epoch: 4 ================
Epoch: 4, Step 0, Loss: 0.08094145357608795
Epoch: 4, Step 50, Loss: 0.05615215748548508
Epoch: 4, Step 100, Loss: 0.07766406238079071
Epoch: 4, Step 150, Loss: 0.07915271818637848
Epoch: 4, Step 200, Loss: 0.1301635503768921
Epoch: 4, Step 250, Loss: 0.12118984013795853
Epoch: 4, Step 300, Loss: 0.073218435049057
Epoch: 4, Step 350, Loss: 0.04517696052789688
Epoch: 4, Step 400, Loss: 0.08493026345968246
Epoch: 4, Step 450, Loss: 0.03904269263148308
Epoch: 4, Step 500, Loss: 0.09386837482452393
Epoch: 4, Step 550, Loss: 0.12583576142787933
Epoch: 4, Step 600, Loss: 0.09053893387317657
Epoch: 4, Step 650, Loss: 0.06912104040384293
Epoch: 4, Step 700, Loss: 0.1502612829208374
Epoch: 4, Step 750, Loss: 0.07162325084209442
Epoch: 4, Step 800, Loss: 0.10512275993824005
Epoch: 4, Step 850, Loss: 0.028180215507745743
Epoch: 4, Step 900, Loss: 0.08492615073919296
Test Accuracy: 98.69%

到此這篇關(guān)于手把手教你實(shí)現(xiàn)PyTorch的MNIST數(shù)據(jù)集的文章就介紹到這了,更多相關(guān)PyTorch MNIST數(shù)據(jù)集內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • 詳解PyTorch手寫數(shù)字識(shí)別(MNIST數(shù)據(jù)集)
  • PyTorch CNN實(shí)戰(zhàn)之MNIST手寫數(shù)字識(shí)別示例
  • Pytorch實(shí)現(xiàn)的手寫數(shù)字mnist識(shí)別功能完整示例
  • pytorch實(shí)現(xiàn)MNIST手寫體識(shí)別
  • pytorch教程實(shí)現(xiàn)mnist手寫數(shù)字識(shí)別代碼示例

標(biāo)簽:西寧 潮州 湖北 珠海 上饒 宜昌 佳木斯 盤錦

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《手把手教你實(shí)現(xiàn)PyTorch的MNIST數(shù)據(jù)集》,本文關(guān)鍵詞  手把手,教你,實(shí)現(xiàn),PyTorch,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《手把手教你實(shí)現(xiàn)PyTorch的MNIST數(shù)據(jù)集》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于手把手教你實(shí)現(xiàn)PyTorch的MNIST數(shù)據(jù)集的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    国产精品911| 久久人人超碰精品| 性做久久久久久免费观看欧美| 91精品国产全国免费观看| 成a人片国产精品| 国产一区二区三区在线观看免费| 久久久久久久久久看片| 欧美理论电影在线| 一本大道av伊人久久综合| 国产一区不卡视频| 日韩影视精彩在线| 亚洲日韩欧美一区二区在线| 久久精品日产第一区二区三区高清版 | 精品国产凹凸成av人网站| 欧美日韩免费观看一区二区三区 | 亚洲免费观看在线视频| 国产精品免费视频网站| 欧美国产国产综合| 久久久久久麻豆| 久久久国产一区二区三区四区小说| av一区二区三区四区| 国内久久精品视频| 国产麻豆精品在线观看| 国产乱码精品1区2区3区| 国产精品一区久久久久| 国产自产高清不卡| 精品一区免费av| 韩国v欧美v亚洲v日本v| 国产乱码精品一品二品| 国产成人av一区| av在线不卡观看免费观看| 91日韩精品一区| 欧美日韩一区三区四区| 欧美日韩精品一区二区三区蜜桃| 欧美日韩国产高清一区二区三区 | 亚洲啪啪综合av一区二区三区| 国产精品成人一区二区艾草| 亚洲欧洲日本在线| 亚洲制服欧美中文字幕中文字幕| 亚洲一区二区在线免费观看视频| 午夜精品久久久久久久久| 视频在线观看91| 狠狠色综合日日| 成人美女视频在线看| 91在线无精精品入口| 欧美久久久久久久久久| 精品国产欧美一区二区| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 欧美喷潮久久久xxxxx| 91精品国产综合久久国产大片| www国产成人| 亚洲夂夂婷婷色拍ww47| 国产乱码精品一区二区三区五月婷 | 精品奇米国产一区二区三区| 国产精品美女久久久久久久| 天堂蜜桃91精品| 国产成人av自拍| 欧美另类久久久品| 欧美激情一区二区三区不卡 | 奇米四色…亚洲| 成年人国产精品| 欧美成人在线直播| www.色精品| 蜜臀av一区二区在线观看 | 中文字幕av一区二区三区 | 国产精品99久久久久久有的能看 | 日韩欧美一级精品久久| 亚洲人吸女人奶水| 国产成人福利片| 精品国产一区二区三区忘忧草 | 在线亚洲欧美专区二区| 欧美成人video| 亚洲午夜精品网| www.欧美精品一二区| 日韩免费高清视频| 亚洲一区二区三区不卡国产欧美| 粉嫩aⅴ一区二区三区四区| 日韩三级av在线播放| 亚洲大片精品永久免费| 99亚偷拍自图区亚洲| 日韩区在线观看| 日韩av在线发布| 欧美久久久一区| 婷婷六月综合亚洲| 欧洲精品中文字幕| 依依成人精品视频| 99精品国产热久久91蜜凸| 国产女同互慰高潮91漫画| 极品瑜伽女神91| 亚洲精品在线观看网站| 日本sm残虐另类| 91麻豆精品国产无毒不卡在线观看| 一区二区三区日韩精品视频| 成人99免费视频| **网站欧美大片在线观看| 成人午夜在线播放| 亚洲国产成人自拍| bt欧美亚洲午夜电影天堂| 中文字幕av在线一区二区三区| 国产精品亚洲第一区在线暖暖韩国| 欧美成人欧美edvon| 另类小说综合欧美亚洲| 欧美xxxxxxxx| 国产麻豆精品在线| 欧美国产成人精品| 99r国产精品| 一个色在线综合| 欧美福利视频导航| 久久精品国产秦先生| 国产日韩欧美激情| 亚洲第一久久影院| 久久精品国产一区二区三 | 在线播放国产精品二区一二区四区| 亚洲已满18点击进入久久| 欧美午夜一区二区三区免费大片| 夜夜嗨av一区二区三区| 51精品国自产在线| 狠狠色综合播放一区二区| 国产精品久久久久9999吃药| 99r精品视频| 热久久国产精品| 久久精品视频网| 91福利资源站| 另类的小说在线视频另类成人小视频在线| 欧美xxx久久| 99麻豆久久久国产精品免费| 婷婷亚洲久悠悠色悠在线播放| www久久精品| 欧美在线你懂得| 久久电影网站中文字幕| 欧美电影免费观看高清完整版在线 | 欧美三级电影在线观看| 蜜桃av一区二区在线观看| 国产欧美日韩激情| 欧美日韩在线一区二区| 黄一区二区三区| 夜夜嗨av一区二区三区四季av| 久久在线观看免费| 欧美日韩一区二区在线观看| 国产成人啪午夜精品网站男同| 亚洲综合av网| 国产精品日韩精品欧美在线| 制服丝袜激情欧洲亚洲| 91色九色蝌蚪| 成人性视频免费网站| 日av在线不卡| 一区二区三区在线视频播放| 久久亚洲影视婷婷| 欧美精品在欧美一区二区少妇| 成人免费毛片高清视频| 久久激情五月激情| 亚洲va天堂va国产va久| 综合电影一区二区三区| 国产三区在线成人av| 日韩色视频在线观看| 欧美日韩亚洲综合| 91美女在线观看| 高清成人免费视频| 九九久久精品视频| 日产国产高清一区二区三区| 亚洲免费观看高清完整版在线观看熊| 久久久久久久一区| 精品国产91久久久久久久妲己| 91.xcao| 三级影片在线观看欧美日韩一区二区| 99国产一区二区三精品乱码| 美女一区二区视频| 天天亚洲美女在线视频| 亚洲美腿欧美偷拍| 国产精品灌醉下药二区| 久久久蜜桃精品| 亚洲精品一区二区三区福利| 欧美一级xxx| 日韩欧美综合在线| 精品美女在线观看| 日韩精品专区在线| 精品欧美乱码久久久久久1区2区| 欧美喷水一区二区| 日韩视频在线观看一区二区| 91精品国产91热久久久做人人| 欧美剧情电影在线观看完整版免费励志电影 | 国产精品系列在线观看| 国产综合色产在线精品| 国产成人自拍网| thepron国产精品| 91网上在线视频| 在线视频一区二区三区| 欧美浪妇xxxx高跟鞋交| 7777精品久久久大香线蕉| 日韩视频123| 国产日韩一级二级三级| 中文字幕欧美一| 亚洲制服丝袜在线| 免费精品视频在线| 国产成人综合网| 欧美系列日韩一区| 日韩精品一区二区三区在线观看| 国产视频视频一区| 亚洲一区二区三区精品在线| 美脚の诱脚舐め脚责91|