婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁(yè) > 知識(shí)庫(kù) > PostgreSQL 對(duì)IN,EXISTS,ANY/ALL,JOIN的sql優(yōu)化方案

PostgreSQL 對(duì)IN,EXISTS,ANY/ALL,JOIN的sql優(yōu)化方案

熱門(mén)標(biāo)簽:江蘇400電話辦理官方 天津開(kāi)發(fā)區(qū)地圖標(biāo)注app 移動(dòng)外呼系統(tǒng)模擬題 電銷(xiāo)機(jī)器人能補(bǔ)救房產(chǎn)中介嗎 地圖標(biāo)注要花多少錢(qián) 廣州電銷(xiāo)機(jī)器人公司招聘 電話機(jī)器人怎么換人工座席 400電話申請(qǐng)客服 濟(jì)南外呼網(wǎng)絡(luò)電話線路

測(cè)試環(huán)境:

postgres=# select version();       
                         version                        
---------------------------------------------------------------------------------------------------------
 PostgreSQL 11.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39), 64-bit
(1 row) 
postgres=#

數(shù)據(jù)準(zhǔn)備:

$ pgbench -i -s 10
postgres=# \d
       List of relations
 Schema |    Name    | Type | Owner 
--------+------------------+-------+----------
 public | pgbench_accounts | table | postgres
 public | pgbench_branches | table | postgres
 public | pgbench_history | table | postgres
 public | pgbench_tellers | table | postgres
(4 rows)
 
postgres=# select * from pgbench_accounts limit 1;
 aid | bid | abalance |                    filler                    
-----+-----+----------+--------------------------------------------------------------------------------------
  1 |  1 |    0 |                                          
(1 row)
 
postgres=# select * from pgbench_branches limit 1;
 bid | bbalance | filler
-----+----------+--------
  1 |    0 |
(1 row)
 
postgres=# select * from pgbench_history limit 1;
 tid | bid | aid | delta | mtime | filler
-----+-----+-----+-------+-------+--------
(0 rows)
 
postgres=# select * from pgbench_tellers limit 1;
 tid | bid | tbalance | filler
-----+-----+----------+--------
  1 |  1 |    0 |
(1 row)
 
postgres=# select * from pgbench_branches;
 bid | bbalance | filler
-----+----------+--------
  1 |    0 |
  2 |    0 |
  3 |    0 |
  4 |    0 |
  5 |    0 |
  6 |    0 |
  7 |    0 |
  8 |    0 |
  9 |    0 |
 10 |    0 |
(10 rows)
 
postgres=# update pgbench_branches set bbalance=4500000 where bid in (4,7);
UPDATE 2
postgres=#

IN語(yǔ)句

查詢要求:找出那些余額(balance)大于0的每個(gè)分支(branch)在表在pgbench_accounts中有多少個(gè)賬戶

1.使用IN子句 

SELECT
  count( aid ),bid
FROM
  pgbench_accounts
WHERE
  bid IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
GROUP BY
  bid;
 

2.使用ANY子句

SELECT
  count( aid ),bid
FROM
  pgbench_accounts
WHERE
  bid = ANY ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
GROUP BY
  bid;

  

3.使用EXISTS子句

SELECT
  count( aid ),bid
FROM
  pgbench_accounts
WHERE
  EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid )
GROUP BY
  bid;

  

4.使用INNER JOIN

SELECT
  count( aid ),a.bid
FROM
  pgbench_accounts a
  JOIN pgbench_branches b ON a.bid = b.bid
WHERE
  b.bbalance > 0
GROUP BY
  a.bid;

在完成這個(gè)查詢要求的時(shí)候,有人可能會(huì)假設(shè)exists和inner join性能可能會(huì)更好,因?yàn)樗麄兛梢允褂脙杀磉B接的邏輯和優(yōu)化。而IN和ANY子句需要使用子查詢。

然而,PostgreSQL(10版本之后)已經(jīng)智能的足以對(duì)上面四種寫(xiě)法產(chǎn)生相同的執(zhí)行計(jì)劃!

所有上面的寫(xiě)法都會(huì)產(chǎn)生相同的執(zhí)行計(jì)劃:

                                      QUERY PLAN                                      
------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize GroupAggregate (cost=23327.73..23330.26 rows=10 width=12) (actual time=97.199..99.014 rows=2 loops=1)
  Group Key: a.bid
  -> Gather Merge (cost=23327.73..23330.06 rows=20 width=12) (actual time=97.191..99.006 rows=6 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Sort (cost=22327.70..22327.73 rows=10 width=12) (actual time=93.762..93.766 rows=2 loops=3)
        Sort Key: a.bid
        Sort Method: quicksort Memory: 25kB
        Worker 0: Sort Method: quicksort Memory: 25kB
        Worker 1: Sort Method: quicksort Memory: 25kB
        -> Partial HashAggregate (cost=22327.44..22327.54 rows=10 width=12) (actual time=93.723..93.727 rows=2 loops=3)
           Group Key: a.bid
           -> Hash Join (cost=1.14..22119.10 rows=41667 width=8) (actual time=24.024..83.263 rows=66667 loops=3)
              Hash Cond: (a.bid = b.bid)
              -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.023..43.151 rows=333333 loops=3)
              -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.027..0.028 rows=2 loops=3)
                 Buckets: 1024 Batches: 1 Memory Usage: 9kB
                 -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.018..0.020 rows=2 loops=3)
                    Filter: (bbalance > 0)
                    Rows Removed by Filter: 8
 Planning Time: 0.342 ms
 Execution Time: 99.164 ms
(22 rows)

那么,我們是否可以得出這樣的結(jié)論:我們可以隨意地編寫(xiě)查詢,而PostgreSQL的智能將會(huì)處理其余的問(wèn)題?!

等等!

如果我們考慮排除情況,事情會(huì)變得不同。

排除查詢

查詢要求:找出那些余額(balance)不大于0的每個(gè)分支(branch)在表在pgbench_accounts中有多少個(gè)賬戶

1.使用NOT IN

SELECT
  count( aid ),bid
FROM
  pgbench_accounts
WHERE
  bid NOT IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
GROUP BY
  bid;

執(zhí)行計(jì)劃:

                                    QUERY PLAN                                    
----------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize GroupAggregate (cost=23645.42..23647.95 rows=10 width=12) (actual time=128.606..130.502 rows=8 loops=1)
  Group Key: pgbench_accounts.bid
  -> Gather Merge (cost=23645.42..23647.75 rows=20 width=12) (actual time=128.598..130.490 rows=24 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Sort (cost=22645.39..22645.42 rows=10 width=12) (actual time=124.960..124.963 rows=8 loops=3)
        Sort Key: pgbench_accounts.bid
        Sort Method: quicksort Memory: 25kB
        Worker 0: Sort Method: quicksort Memory: 25kB
        Worker 1: Sort Method: quicksort Memory: 25kB
        -> Partial HashAggregate (cost=22645.13..22645.23 rows=10 width=12) (actual time=124.917..124.920 rows=8 loops=3)
           Group Key: pgbench_accounts.bid
           -> Parallel Seq Scan on pgbench_accounts (cost=1.13..21603.46 rows=208333 width=8) (actual time=0.078..83.134 rows=266667 loops=3)
              Filter: (NOT (hashed SubPlan 1))
              Rows Removed by Filter: 66667
              SubPlan 1
               -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.020..0.021 rows=2 loops=3)
                  Filter: (bbalance > 0)
                  Rows Removed by Filter: 8
 Planning Time: 0.310 ms
 Execution Time: 130.620 ms
(21 rows)
 
postgres=#

2.使用>ALL

SELECT
  count( aid ),bid
FROM
  pgbench_accounts
WHERE
  bid > ALL ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 )
GROUP BY
  bid;

執(zhí)行計(jì)劃:

                                     QUERY PLAN                                    
------------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize GroupAggregate (cost=259581.79..259584.32 rows=10 width=12) (actual time=418.220..419.913 rows=8 loops=1)
  Group Key: pgbench_accounts.bid
  -> Gather Merge (cost=259581.79..259584.12 rows=20 width=12) (actual time=418.212..419.902 rows=24 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Sort (cost=258581.76..258581.79 rows=10 width=12) (actual time=413.906..413.909 rows=8 loops=3)
        Sort Key: pgbench_accounts.bid
        Sort Method: quicksort Memory: 25kB
        Worker 0: Sort Method: quicksort Memory: 25kB
        Worker 1: Sort Method: quicksort Memory: 25kB
        -> Partial HashAggregate (cost=258581.50..258581.60 rows=10 width=12) (actual time=413.872..413.875 rows=8 loops=3)
           Group Key: pgbench_accounts.bid
           -> Parallel Seq Scan on pgbench_accounts (cost=0.00..257539.83 rows=208333 width=8) (actual time=0.054..367.244 rows=266667 loops=3)
              Filter: (SubPlan 1)
              Rows Removed by Filter: 66667
              SubPlan 1
               -> Materialize (cost=0.00..1.13 rows=1 width=4) (actual time=0.000..0.001 rows=2 loops=1000000)
                  -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.001..0.001 rows=2 loops=337880)
                     Filter: (bbalance > 0)
                     Rows Removed by Filter: 8
 Planning Time: 0.218 ms
 Execution Time: 420.035 ms
(22 rows) 
postgres=#

3.使用NOT EXISTS

SELECT
  count( aid ),bid
FROM
  pgbench_accounts
WHERE
  NOT EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid )
GROUP BY
  bid;

執(zhí)行計(jì)劃:

                                      QUERY PLAN                                     
----------------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=152.024..153.931 rows=8 loops=1)
  Group Key: pgbench_accounts.bid
  -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=152.014..153.917 rows=24 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=147.782..147.786 rows=8 loops=3)
        Sort Key: pgbench_accounts.bid
        Sort Method: quicksort Memory: 25kB
        Worker 0: Sort Method: quicksort Memory: 25kB
        Worker 1: Sort Method: quicksort Memory: 25kB
        -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=147.732..147.737 rows=8 loops=3)
           Group Key: pgbench_accounts.bid
           -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.134..101.884 rows=266667 loops=3)
              Hash Cond: (pgbench_accounts.bid = pgbench_branches.bid)
              -> Parallel Seq Scan on pgbench_accounts (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.032..45.174 rows=333333 loops=3)
              -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.036..0.037 rows=2 loops=3)
                 Buckets: 1024 Batches: 1 Memory Usage: 9kB
                 -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.025..0.027 rows=2 loops=3)
                    Filter: (bbalance > 0)
                    Rows Removed by Filter: 8
 Planning Time: 0.322 ms
 Execution Time: 154.040 ms
(22 rows) 
postgres=#

4.使用LEFT JOIN和IS NULL

SELECT
  count( aid ),a.bid
FROM
  pgbench_accounts a
  LEFT JOIN pgbench_branches b ON a.bid = b.bid AND b.bbalance > 0
WHERE
  b.bid IS NULL
GROUP BY
  a.bid;

執(zhí)行計(jì)劃:

                                      QUERY PLAN                                      
------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=145.298..147.096 rows=8 loops=1)
  Group Key: a.bid
  -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=145.288..147.083 rows=24 loops=1)
     Workers Planned: 2
     Workers Launched: 2
     -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=141.883..141.887 rows=8 loops=3)
        Sort Key: a.bid
        Sort Method: quicksort Memory: 25kB
        Worker 0: Sort Method: quicksort Memory: 25kB
        Worker 1: Sort Method: quicksort Memory: 25kB
        -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=141.842..141.847 rows=8 loops=3)
           Group Key: a.bid
           -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.087..99.535 rows=266667 loops=3)
              Hash Cond: (a.bid = b.bid)
              -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.025..44.337 rows=333333 loops=3)
              -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.026..0.027 rows=2 loops=3)
                 Buckets: 1024 Batches: 1 Memory Usage: 9kB
                 -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.019..0.020 rows=2 loops=3)
                    Filter: (bbalance > 0)
                    Rows Removed by Filter: 8
 Planning Time: 0.231 ms
 Execution Time: 147.180 ms
(22 rows) 
postgres=#

NOT IN 和 > ALL生成執(zhí)行計(jì)劃都包含了一個(gè)子查詢。他們是各自獨(dú)立的。

而NOT EXISTS和LEFT JOIN生成了相同的執(zhí)行計(jì)劃。

這些hash連接(或hash anti join)是完成查詢要求的最靈活的方式。這也是推薦exists或join的原因。因此,推薦使用exists或join的經(jīng)驗(yàn)法則是有效的。

但是,我們繼續(xù)往下看! 即使有了子查詢執(zhí)行計(jì)劃,NOT IN子句的執(zhí)行時(shí)間也會(huì)更好?

是的。PostgreSQL做了出色的優(yōu)化,PostgreSQL將子查詢計(jì)劃進(jìn)行了hash處理。因此PostgreSQL對(duì)如何處理IN子句有了更好的理解,這是一種邏輯思維方式,因?yàn)楹芏嗳藘A向于使用IN子句。子查詢返回的行很少,但即使子查詢返回幾百行,也會(huì)發(fā)生同樣的情況。

但是,如果子查詢返回大量行(幾十萬(wàn)行)怎么辦?讓我們嘗試一個(gè)簡(jiǎn)單的測(cè)試:

CREATE TABLE t1 AS
SELECT * FROM generate_series(0, 500000) id;
 
CREATE TABLE t2 AS
SELECT (random() * 4000000)::integer id
FROM generate_series(0, 4000000);
 
ANALYZE t1;
ANALYZE t2;
 
EXPLAIN SELECT id
FROM t1
WHERE id NOT IN (SELECT id FROM t2);

執(zhí)行計(jì)劃:

    QUERY PLAN                 
--------------------------------------------------------------------------------
 Gather (cost=1000.00..15195064853.01 rows=250000 width=4)
  Workers Planned: 1
  -> Parallel Seq Scan on t1 (cost=0.00..15195038853.01 rows=147059 width=4)
     Filter: (NOT (SubPlan 1))
     SubPlan 1
      -> Materialize (cost=0.00..93326.01 rows=4000001 width=4)
         -> Seq Scan on t2 (cost=0.00..57700.01 rows=4000001 width=4)
(7 rows)
 
postgres=#

這里,執(zhí)行計(jì)劃將子查詢進(jìn)行了物化。代價(jià)評(píng)估變成了15195038853.01。(PostgreSQL的默認(rèn)設(shè)置,如果t2表的行低于100k,會(huì)將子查詢進(jìn)行hash)。這樣就會(huì)嚴(yán)重影響性能。因此,對(duì)于那種子查詢返回的行數(shù)很少的場(chǎng)景,IN子句可以起到很好的作用。

其它注意點(diǎn)

有的!在我們用不同的方式寫(xiě)查詢的時(shí)候,可能有數(shù)據(jù)類型的轉(zhuǎn)換。

比如,語(yǔ)句:

EXPLAIN ANALYZE SELECT * FROM emp WHERE gen = ANY(ARRAY['M', 'F']);

就會(huì)發(fā)生隱式的類型轉(zhuǎn)換:

Seq Scan on emp (cost=0.00..1.04 rows=2 width=43) (actual time=0.023..0.026 rows=3 loops=1)
 Filter: ((gen)::text = ANY ('{M,F}'::text[]))

這里的(gen)::text就發(fā)生了類型轉(zhuǎn)換。如果在大表上,這種類型轉(zhuǎn)換的代價(jià)會(huì)很高,因此,PostgreSQL對(duì)IN子句做了更好的處理。

EXPLAIN ANALYZE SELECT * FROM emp WHERE gen IN ('M','F');
 
 Seq Scan on emp (cost=0.00..1.04 rows=3 width=43) (actual time=0.030..0.034 rows=3 loops=1)
  Filter: (gen = ANY ('{M,F}'::bpchar[]))

將IN子句轉(zhuǎn)換成了ANY子句,沒(méi)有對(duì)gen列進(jìn)行類型轉(zhuǎn)換。而是將M\F轉(zhuǎn)成了bpchar(內(nèi)部等價(jià)于char)

總結(jié)

簡(jiǎn)單來(lái)說(shuō),exists和直接join表通常比較好。

很多情況下,PostgreSQL將IN子句換成被hash的子計(jì)劃。在一些特殊場(chǎng)景下,IN可以獲得更好的執(zhí)行計(jì)劃。

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • PostgreSQL利用遞歸優(yōu)化求稀疏列唯一值的方法
  • PostgreSQL刪除更新優(yōu)化操作
  • Postgresql排序與limit組合場(chǎng)景性能極限優(yōu)化詳解
  • postgresql通過(guò)索引優(yōu)化查詢速度操作
  • postgresql關(guān)于like%xxx%的優(yōu)化操作

標(biāo)簽:杭州 海西 濮陽(yáng) 榆林 辛集 溫州 寶雞 昭通

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《PostgreSQL 對(duì)IN,EXISTS,ANY/ALL,JOIN的sql優(yōu)化方案》,本文關(guān)鍵詞  PostgreSQL,對(duì),EXISTS,ANY,ALL,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《PostgreSQL 對(duì)IN,EXISTS,ANY/ALL,JOIN的sql優(yōu)化方案》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于PostgreSQL 對(duì)IN,EXISTS,ANY/ALL,JOIN的sql優(yōu)化方案的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    国产精品污网站| 7777精品伊人久久久大香线蕉的| 久久综合九色欧美综合狠狠| 国产最新精品免费| 国产精品无圣光一区二区| jvid福利写真一区二区三区| 亚洲免费观看视频| 在线播放亚洲一区| 国内精品第一页| 中文字幕精品一区二区精品绿巨人 | 精品三级av在线| 国产麻豆视频精品| 亚洲视频在线一区| 欧美精品tushy高清| 捆绑调教一区二区三区| 欧美国产97人人爽人人喊| 色成年激情久久综合| 蜜臀久久99精品久久久画质超高清| 欧美精品一区二区精品网| 粉嫩av一区二区三区| 亚洲国产日韩av| 久久免费视频色| 在线亚洲一区二区| 久久www免费人成看片高清| 国产精品美女www爽爽爽| 欧美日韩国产综合一区二区三区| 国产福利视频一区二区三区| 亚洲一区二区三区美女| 久久午夜电影网| 在线精品亚洲一区二区不卡| 国产一区 二区 三区一级| 亚洲午夜精品久久久久久久久| 久久午夜羞羞影院免费观看| 欧美天堂亚洲电影院在线播放| 国产乱国产乱300精品| 午夜国产不卡在线观看视频| 国产精品成人网| 精品国产乱子伦一区| 欧美人狂配大交3d怪物一区| 国产.精品.日韩.另类.中文.在线.播放| 亚洲午夜羞羞片| 成人欧美一区二区三区| 久久婷婷国产综合国色天香| 欧美日本精品一区二区三区| 96av麻豆蜜桃一区二区| 国产高清亚洲一区| 久久精品国产999大香线蕉| 亚洲自拍偷拍图区| 中文字幕亚洲欧美在线不卡| www精品美女久久久tv| 91精品国产欧美日韩| 欧美探花视频资源| 91丨porny丨在线| 粉嫩aⅴ一区二区三区四区| 国产在线精品一区二区不卡了 | 香蕉久久夜色精品国产使用方法| 精品国产91乱码一区二区三区 | 亚洲成a人片在线不卡一二三区| 国产精品美女一区二区在线观看| 精品国产免费一区二区三区四区| 欧美日韩三级在线| 欧美日精品一区视频| 91福利资源站| 欧美在线制服丝袜| 91久久精品一区二区三区| 波多野结衣一区二区三区| 成人免费看视频| 国产大陆精品国产| 国产suv精品一区二区三区| 国产在线一区二区| 国产99久久久国产精品潘金 | 欧美一二三在线| 欧美丰满嫩嫩电影| 91精品欧美一区二区三区综合在| 欧美日韩第一区日日骚| 欧美丰满一区二区免费视频| 91精品在线免费| 日韩欧美激情在线| 国产亚洲制服色| 中文天堂在线一区| 一区二区三区四区蜜桃| 亚洲午夜久久久久| 日韩制服丝袜先锋影音| 蜜臀久久久久久久| 精品无人区卡一卡二卡三乱码免费卡| 麻豆极品一区二区三区| 亚洲图片你懂的| 亚洲va欧美va天堂v国产综合| 亚洲色图在线视频| 亚洲va欧美va人人爽午夜| 视频一区二区国产| 国产精品一区二区在线观看网站| 成人一区二区视频| 91黄色在线观看| 91福利国产成人精品照片| 91天堂素人约啪| 欧美日韩中文一区| 欧美影院一区二区三区| 高清beeg欧美| 色视频欧美一区二区三区| 欧美日韩午夜在线| 欧美一级片免费看| 国产精品免费看片| 午夜视黄欧洲亚洲| 国产一区二区三区在线观看免费| 丁香婷婷深情五月亚洲| 欧洲av在线精品| 久久先锋资源网| 亚洲成人综合视频| 国产二区国产一区在线观看| 欧美综合一区二区三区| 久久亚洲一区二区三区四区| 97精品久久久久中文字幕| 欧美日韩一区二区电影| 久久精品人人做人人爽人人| 悠悠色在线精品| 国产精品1024| 在线播放日韩导航| 国产精品蜜臀在线观看| 美日韩黄色大片| 色999日韩国产欧美一区二区| 欧美大片一区二区| 亚洲永久免费视频| 大尺度一区二区| 欧美一级国产精品| 一级女性全黄久久生活片免费| 韩国精品在线观看| 欧美日产国产精品| 亚洲精品高清在线观看| 国产成人在线视频网址| 91精品国产综合久久久蜜臀粉嫩| 亚洲免费在线看| 成人国产免费视频| 精品国产乱码91久久久久久网站| 亚洲综合一二三区| 92国产精品观看| 国产亚洲污的网站| 精彩视频一区二区| 欧美一区二区黄色| 一区二区三区视频在线观看| 粉嫩欧美一区二区三区高清影视| 精品国产亚洲在线| 蜜臀久久99精品久久久久久9| 欧美日本韩国一区二区三区视频| 亚洲欧美日韩系列| 99re这里都是精品| 国产精品国产三级国产aⅴ中文| 国产高清无密码一区二区三区| 精品人在线二区三区| 毛片不卡一区二区| 日韩视频在线永久播放| 婷婷成人综合网| 91精品国产手机| 日本特黄久久久高潮| 日本在线播放一区二区三区| 成人免费精品视频| 欧美精品一二三四| 日韩电影在线免费| 884aa四虎影成人精品一区| 午夜伊人狠狠久久| 欧美视频日韩视频在线观看| 亚洲一区在线播放| 欧美性感一区二区三区| 亚洲午夜羞羞片| 欧美精品三级日韩久久| 日本伊人色综合网| 日韩精品一区二区在线| 国产综合成人久久大片91| 久久久不卡影院| 99视频在线观看一区三区| 9久草视频在线视频精品| 国产精品美女久久久久久2018| av激情综合网| 一区二区三区四区视频精品免费 | 国产乱理伦片在线观看夜一区| 欧美电视剧在线观看完整版| 国产在线国偷精品产拍免费yy | 日韩小视频在线观看专区| 日本不卡高清视频| 欧美精品一区二区高清在线观看| 国产伦精品一区二区三区免费迷 | 色猫猫国产区一区二在线视频| 亚洲人成网站影音先锋播放| 欧美三级电影在线观看| 免费看日韩a级影片| 久久久久久久久岛国免费| 99re成人精品视频| 亚洲午夜在线视频| 欧美一级久久久| 国产精品888| 亚洲伊人伊色伊影伊综合网| 秋霞电影网一区二区| 精品国产欧美一区二区| 99国产精品99久久久久久| 日韩av一级电影| 国产精品免费视频观看| 欧美精品一卡二卡| 成人午夜免费电影| 丝袜亚洲另类欧美| 国产亚洲欧洲一区高清在线观看|