婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > Pytorch教程內置模型源碼實現

Pytorch教程內置模型源碼實現

熱門標簽:哈爾濱外呼系統代理商 南昌辦理400電話怎么安裝 電話機器人適用業務 徐州天音防封電銷卡 不錯的400電話辦理 佛山防封外呼系統收費 獲客智能電銷機器人 鄭州智能外呼系統運營商 湛江電銷防封卡

翻譯自
https://pytorch.org/docs/stable/torchvision/models.html
主要講解了torchvision.models的使用

torchvision.models

torchvision.models中包含了如下模型

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
  • Inception v3

隨機初始化模型

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
desnet = models.densenet161()
inception =models.inception_v3()

使用預訓練好的參數

pytorch提供了預訓練的模型,使用torch.utils.model_zoo ,通過讓參數pretrained =True來構建訓練好的模型

方法如下

resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)

實例化一個預訓練好的模型會自動下載權重到緩存目錄,這個權重存儲路徑可以通過環境變量TORCH_MODEL_ZOO來指定,詳細的參考torch.utils.model_zoo.load_url() 這個函數

有的模型試驗了不同的訓練和評估,例如batch normalization。使用model.train()和model.eval()來轉換,查看train() or eval() 來了解更多細節

所有的預訓練網絡希望使用相同的方式進行歸一化,例如圖片是mini-batch形式的3通道RGB圖片(3HW),H和W最少是244,。 圖像必須加載到[0,1]范圍內,然后使用均值=[0.485,0.456,0.406]和std =[0.229, 0.224, 0.225]進行歸一化。

您可以使用以下轉換來normalzie:

normalize = trainform.Normalize9mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])

在這里我們可以找到一個在Imagenet上的這樣的例子
https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101

目前這些模型的效果如下

下面是模型源碼的具體實現,具體實現大家可以閱讀源碼

###ALEXNET
torchvision.models.alexnet(pretrained=False, **kwargs)[SOURCE]
AlexNet model architecture from the “One weird trick…” paper.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
###VGG
torchvision.models.vgg11(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg11_bn(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13_bn(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16_bn(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration “E”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19_bn(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration ‘E') with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
RESNET
torchvision.models.resnet18(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-18 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet34(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-34 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet50(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-50 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet101(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-101 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet152(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-152 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
SQUEEZENET
torchvision.models.squeezenet1_0(pretrained=False, **kwargs)[SOURCE]
SqueezeNet model architecture from the “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5MB model size” paper.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.squeezenet1_1(pretrained=False, **kwargs)[SOURCE]
SqueezeNet 1.1 model from the official SqueezeNet repo. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
DENSENET
torchvision.models.densenet121(pretrained=False, **kwargs)[SOURCE]
Densenet-121 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet169(pretrained=False, **kwargs)[SOURCE]
Densenet-169 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet161(pretrained=False, **kwargs)[SOURCE]
Densenet-161 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet201(pretrained=False, **kwargs)[SOURCE]
Densenet-201 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
INCEPTION V3
torchvision.models.inception_v3(pretrained=False, **kwargs)[SOURCE]
Inception v3 model architecture from “Rethinking the Inception Architecture for Computer Vision”.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet

以上就是Pytorch教程內置模型源碼實現的詳細內容,更多關于Pytorch內置模型的資料請關注腳本之家其它相關文章!

您可能感興趣的文章:
  • pytorch教程之Tensor的值及操作使用學習
  • 使用Pytorch搭建模型的步驟
  • 如何使用Pytorch搭建模型
  • pytorch構建網絡模型的4種方法

標簽:懷化 紹興 呂梁 廣西 安康 吉安 蕪湖 蘭州

巨人網絡通訊聲明:本文標題《Pytorch教程內置模型源碼實現》,本文關鍵詞  Pytorch,教程,內置,模型,源碼,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Pytorch教程內置模型源碼實現》相關的同類信息!
  • 本頁收集關于Pytorch教程內置模型源碼實現的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 铁力市| 安图县| 清水县| 庐江县| 长顺县| 三穗县| 溧水县| 无为县| 闻喜县| 宁阳县| 平原县| 嫩江县| 慈利县| 巢湖市| 安龙县| 靖宇县| 新蔡县| 临洮县| 禄劝| 华亭县| 永善县| 阿克陶县| 佛山市| 福安市| 保德县| 麟游县| 舟山市| 巴楚县| 枝江市| 南通市| 南投市| 宁晋县| 抚顺市| 潮安县| 郴州市| 汝城县| 苍山县| 遵义市| 九江县| 大荔县| 错那县|