婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > pytorch訓(xùn)練神經(jīng)網(wǎng)絡(luò)爆內(nèi)存的解決方案

pytorch訓(xùn)練神經(jīng)網(wǎng)絡(luò)爆內(nèi)存的解決方案

熱門標(biāo)簽:富錦商家地圖標(biāo)注 池州外呼調(diào)研線路 江西省地圖標(biāo)注 沈陽外呼系統(tǒng)呼叫系統(tǒng) 沈陽人工外呼系統(tǒng)價格 沈陽防封電銷卡品牌 如何申請400電話費用 外呼系統(tǒng)哪些好辦 武漢外呼系統(tǒng)平臺

訓(xùn)練的時候內(nèi)存一直在增加,最后內(nèi)存爆滿,被迫中斷。

后來換了一個電腦發(fā)現(xiàn)還是這樣,考慮是代碼的問題。

檢查才發(fā)現(xiàn)我的代碼兩次存了loss,只有一個地方寫的是loss.item()。問題就在loss,因為loss是variable類型。

要寫成loss_train = loss_train + loss.item(),不能直接寫loss_train = loss_train + loss。否則就會發(fā)現(xiàn)隨著epoch的增加,占的內(nèi)存也在一點一點增加。

算是一個小坑吧,希望大家還是要仔細(xì)。

補充:pytorch神經(jīng)網(wǎng)絡(luò)解決回歸問題(非常易懂)

對于pytorch的深度學(xué)習(xí)框架

在建立人工神經(jīng)網(wǎng)絡(luò)時整體的步驟主要有以下四步:

1、載入原始數(shù)據(jù)

2、構(gòu)建具體神經(jīng)網(wǎng)絡(luò)

3、進行數(shù)據(jù)的訓(xùn)練

4、數(shù)據(jù)測試和驗證

pytorch神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)載入,以MINIST書寫字體的原始數(shù)據(jù)為例:

import torch
import matplotlib.pyplot as  plt
def plot_curve(data):
    fig=plt.figure()
    plt.plot(range(len(data)),data,color="blue")
    plt.legend(["value"],loc="upper right")
    plt.xlabel("step")
    plt.ylabel("value")
    plt.show()
 
def plot_image(img,label,name):
    fig=plt.figure()
    for i in range(6):
        plt.subplot(2,3,i+1)
        plt.tight_layout()
        plt.imshow(img[i][0]*0.3081+0.1307,cmap="gray",interpolation="none")
        plt.title("{}:{}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()
def one_hot(label,depth=10):
    out=torch.zeros(label.size(0),depth)
    idx=torch.LongTensor(label).view(-1,1)
    out.scatter_(dim=1,index=idx,value=1)
    return out
 
batch_size=512
import torch
from torch import nn                         #完成神經(jīng)網(wǎng)絡(luò)的構(gòu)建包
from torch.nn import functional as F         #包含常用的函數(shù)包
from torch import optim                      #優(yōu)化工具包
import torchvision                           #視覺工具包
import  matplotlib.pyplot as plt
from utils import plot_curve,plot_image,one_hot
#step1 load dataset   加載數(shù)據(jù)包
train_loader=torch.utils.data.DataLoader(
    torchvision.datasets.MNIST("minist_data",train=True,download=True,transform=torchvision.transforms.Compose(
        [torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,),(0.3081,))
         ])),
    batch_size=batch_size,shuffle=True)
test_loader=torch.utils.data.DataLoader(
    torchvision.datasets.MNIST("minist_data",train=True,download=False,transform=torchvision.transforms.Compose(
        [torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,),(0.3081,))
         ])),
    batch_size=batch_size,shuffle=False)
x,y=next(iter(train_loader))
print(x.shape,y.shape)
plot_image(x,y,"image")
print(x)
print(y)

以構(gòu)建一個簡單的回歸問題的神經(jīng)網(wǎng)絡(luò)為例,

其具體的實現(xiàn)代碼如下所示:

import torch
import torch.nn.functional as F  # 激勵函數(shù)都在這
 
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2 * torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
 
class Net(torch.nn.Module):  # 繼承 torch 的 Module(固定)
    def __init__(self, n_feature, n_hidden, n_output):  # 定義層的信息,n_feature多少個輸入, n_hidden每層神經(jīng)元, n_output多少個輸出
        super(Net, self).__init__()  # 繼承 __init__ 功能(固定)
        # 定義每層用什么樣的形式
        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # 定義隱藏層,線性輸出
        self.predict = torch.nn.Linear(n_hidden, n_output)  # 定義輸出層線性輸出
 
    def forward(self, x):  # x是輸入信息就是data,同時也是 Module 中的 forward 功能,定義神經(jīng)網(wǎng)絡(luò)前向傳遞的過程,把__init__中的層信息一個一個的組合起來
        # 正向傳播輸入值, 神經(jīng)網(wǎng)絡(luò)分析出輸出值
        x = F.relu(self.hidden(x))  # 定義激勵函數(shù)(隱藏層的線性值)
        x = self.predict(x)  # 輸出層,輸出值
        return x 
 
net = Net(n_feature=1, n_hidden=10, n_output=1) 
print(net)  # net 的結(jié)構(gòu)
"""
Net (
  (hidden): Linear (1 -> 10)
  (predict): Linear (10 -> 1)
)
"""
# optimizer 是訓(xùn)練的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 傳入 net 的所有參數(shù), 學(xué)習(xí)率
loss_func = torch.nn.MSELoss()  # 預(yù)測值和真實值的誤差計算公式 (均方差)
 
for t in range(100):  # 訓(xùn)練的步數(shù)100步
    prediction = net(x)  # 喂給 net 訓(xùn)練數(shù)據(jù) x, 每迭代一步,輸出預(yù)測值
 
    loss = loss_func(prediction, y)  # 計算兩者的誤差
 
    # 優(yōu)化步驟:
    optimizer.zero_grad()  # 清空上一步的殘余更新參數(shù)值
    loss.backward()  # 誤差反向傳播, 計算參數(shù)更新值
    optimizer.step()  # 將參數(shù)更新值施加到 net 的 parameters 上
 
import matplotlib.pyplot as plt 
plt.ion()  # 實時畫圖something about plotting 
for t in range(200):
    prediction = net(x)  # input x and predict based on x 
    loss = loss_func(prediction, y)  # must be (1. nn output, 2. target) 
    optimizer.zero_grad()  # clear gradients for next train
    loss.backward()  # backpropagation, compute gradients
    optimizer.step()  # apply gradients
 
    if t % 5 == 0:  # 每五步繪一次圖
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)
 
plt.ioff()
plt.show()

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • 解決Pytorch半精度浮點型網(wǎng)絡(luò)訓(xùn)練的問題
  • PyTorch梯度裁剪避免訓(xùn)練loss nan的操作
  • Pytorch訓(xùn)練模型得到輸出后計算F1-Score 和AUC的操作
  • pytorch加載預(yù)訓(xùn)練模型與自己模型不匹配的解決方案
  • Pytorch訓(xùn)練網(wǎng)絡(luò)過程中l(wèi)oss突然變?yōu)?的解決方案
  • pytorch 如何使用float64訓(xùn)練

標(biāo)簽:常德 通遼 阿里 呂梁 潛江 株洲 黑龍江 銅川

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《pytorch訓(xùn)練神經(jīng)網(wǎng)絡(luò)爆內(nèi)存的解決方案》,本文關(guān)鍵詞  pytorch,訓(xùn)練,神經(jīng)網(wǎng)絡(luò),爆,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《pytorch訓(xùn)練神經(jīng)網(wǎng)絡(luò)爆內(nèi)存的解決方案》相關(guān)的同類信息!
  • 本頁收集關(guān)于pytorch訓(xùn)練神經(jīng)網(wǎng)絡(luò)爆內(nèi)存的解決方案的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    国产sm精品调教视频网站| 久久久91精品国产一区二区精品| 在线免费观看日本一区| 一本久久a久久精品亚洲| 欧美成人激情免费网| 亚洲综合在线视频| 欧美色爱综合网| 天堂资源在线中文精品| 欧美日韩久久久一区| 日日欢夜夜爽一区| 国产成人精品免费在线| 精品国产乱子伦一区| 亚洲bt欧美bt精品| 精品国产乱码久久久久久闺蜜| 国产盗摄一区二区三区| 欧美日韩一二三| 色哟哟一区二区| 久久99九九99精品| 国产精品二三区| 国产美女在线观看一区| 一区二区成人在线| 欧美日韩一级黄| 亚洲午夜一区二区三区| 色屁屁一区二区| 老色鬼精品视频在线观看播放| 亚洲成人综合网站| 日本视频在线一区| 日韩亚洲欧美一区| 91成人看片片| 国内精品不卡在线| 国产精品91一区二区| www.成人网.com| 亚洲一区二区三区在线看| 日韩av网站在线观看| 亚洲欧美综合在线精品| 欧美性欧美巨大黑白大战| 不卡高清视频专区| 最新热久久免费视频| 中文字幕精品一区| 久久97超碰国产精品超碰| 91高清在线观看| 奇米一区二区三区av| 国内一区二区视频| 亚洲精品欧美激情| 久久精品久久精品| 欧美在线一二三| 日本韩国欧美国产| 中文字幕制服丝袜成人av| 欧美视频一二三区| 国产精品一区二区不卡| 亚洲另类一区二区| 久久精品免视看| 欧美丰满少妇xxxxx高潮对白| 久久99国产精品久久| 亚洲国产毛片aaaaa无费看| 久久精品无码一区二区三区| 精品视频在线免费看| 久久不见久久见免费视频7| 亚洲欧美综合另类在线卡通| 精品国产一区二区精华| 日韩一区二区三区观看| 在线视频一区二区三区| 色综合中文综合网| 欧美一区二区视频免费观看| 91麻豆国产香蕉久久精品| 91一区二区三区在线观看| 蜜桃av一区二区三区| 夜夜精品视频一区二区| 在线不卡一区二区| 国产乱人伦偷精品视频免下载 | 亚洲最大成人综合| 一区二区三区四区高清精品免费观看 | 欧美精品在线一区二区三区| 97se亚洲国产综合自在线不卡| 国产传媒久久文化传媒| 麻豆精品一二三| 国产精品毛片无遮挡高清| 国产日韩精品视频一区| 国产农村妇女毛片精品久久麻豆 | 国产99久久久国产精品免费看| 精品亚洲国内自在自线福利| 国产iv一区二区三区| 欧美成人aa大片| 亚洲美女屁股眼交| eeuss鲁片一区二区三区在线看| 蜜臀久久久久久久| 日韩精品亚洲一区| 久久久久久电影| 在线中文字幕不卡| 欧美日韩亚洲国产综合| 日本午夜精品视频在线观看| 中文字幕亚洲区| 轻轻草成人在线| 91老师国产黑色丝袜在线| 亚洲一区二区高清| 欧美丝袜丝交足nylons图片| 国产精品久久毛片a| 一区二区三区在线看| 亚洲码国产岛国毛片在线| 麻豆精品一区二区综合av| 极品少妇xxxx偷拍精品少妇| 久久97超碰色| 91成人国产精品| 中文字幕不卡的av| 日韩中文字幕1| 首页亚洲欧美制服丝腿| 国产精品综合二区| 91日韩在线专区| 这里只有精品99re| 精品理论电影在线观看| 国产色一区二区| 天天综合天天综合色| 精品在线免费视频| 欧美日韩电影在线| 亚洲国产精品国自产拍av| 日本一区免费视频| 91精品久久久久久久99蜜桃 | 久久久国产一区二区三区四区小说| 中文字幕精品一区二区三区精品| 性欧美大战久久久久久久久| 色噜噜狠狠一区二区三区果冻| 精品国产乱码久久| 天涯成人国产亚洲精品一区av| 在线观看国产日韩| 成人国产精品免费观看视频| 99久久婷婷国产| 中日韩av电影| 国产专区欧美精品| 韩国av一区二区三区在线观看| 欧美日韩国产大片| 亚洲国产一区二区三区青草影视| av中文字幕一区| 亚洲欧洲www| 91在线国产观看| 中文字幕一区二区不卡| 成人高清免费观看| 在线观看日韩高清av| 在线观看免费视频综合| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ原创 | 综合欧美一区二区三区| 国产精品1区二区.| 久久久五月婷婷| 蜜桃视频在线一区| 日韩欧美国产电影| 国内精品久久久久影院色| 日韩午夜在线影院| 伦理电影国产精品| 精品国产一区二区精华| 丰满少妇久久久久久久| 精品国产免费人成电影在线观看四季| 日本成人中文字幕| 欧美日韩色一区| 图片区日韩欧美亚洲| 欧美老人xxxx18| 麻豆国产精品一区二区三区 | 国产精品一线二线三线精华| 国产午夜精品一区二区三区四区| 懂色av一区二区三区蜜臀| 亚洲欧洲成人av每日更新| hitomi一区二区三区精品| 中文字幕一区二区不卡| 欧美性三三影院| 日本不卡一区二区三区| 久久婷婷色综合| 日本中文一区二区三区| 日韩无一区二区| 国产成人精品一区二| 成人欧美一区二区三区黑人麻豆| 欧美午夜理伦三级在线观看| 日韩高清电影一区| 久久午夜色播影院免费高清| 9色porny自拍视频一区二区| 亚洲高清在线精品| 26uuu欧美日本| 97久久超碰国产精品| 日日摸夜夜添夜夜添精品视频| 久久精品视频一区二区三区| 国产精品66部| 亚洲va欧美va天堂v国产综合| 国产成人日日夜夜| 亚洲蜜臀av乱码久久精品蜜桃| 成人av在线网| 日韩av成人高清| 亚洲国产精品成人综合| 欧美日韩视频在线第一区 | 欧美日韩成人综合| 国产美女主播视频一区| 亚洲美女在线一区| 日韩视频一区二区在线观看| 成人精品视频一区二区三区尤物| 亚洲二区在线视频| 日韩女优av电影在线观看| av在线不卡观看免费观看| 天天操天天色综合| 欧美国产日韩一二三区| 欧美日韩不卡视频| 成人午夜激情视频| 欧美aaa在线| 亚洲四区在线观看| 国产九色sp调教91|