婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > pandas 實現某一列分組,其他列合并成list

pandas 實現某一列分組,其他列合并成list

熱門標簽:清遠360地圖標注方法 400電話申請服務商選什么 千陽自動外呼系統 工廠智能電話機器人 江蘇客服外呼系統廠家 西藏智能外呼系統五星服務 原裝電話機器人 在哪里辦理400電話號碼 平頂山外呼系統免費

pandas列轉換為字典,但將相同第一列(鍵)的所有值合并為一個鍵

形式一:

import pandas as pd 
# data
data = pd.DataFrame({'column1':['key1','key1','key2','key2'],
    'column2':['value1','value2','value3','value3']})
print(data) 
# Grouped dict
data_dict = data.groupby('column1').column2.apply(list).to_dict() 
print(data_dict)

輸出結果:

 column1 column2
0  key1 value1
1  key1 value2
2  key2 value3
3  key2 value3 
{'key1': ['value1', 'value2'], 'key2': ['value3', 'value3']}

形式二:

import pandas as pd
# data
df = pd.DataFrame({'column1':['key1','key1','key2','key2'],
    'column2':['value1','value2','value1','value2'],
    'column3':['value11','value11','value22','value22'],
    'column4':['value44','value44','value55','value55']}) 
# Grouped dict
data_dict = df.groupby('column1').apply(lambda x: {col:x[col].tolist() for col in x.columns if col != 'column2'}).to_dict()
print(data_dict) 
data_dict2 = df.groupby('column1').apply(lambda x: {col:x[col].tolist()[0] if col != 'column2' else x[col].tolist() for col in x.columns}).to_dict()
print(data_dict2)

輸出結果:

#data_dict
{
  'key1': {
    'column1': ['key1', 'key1'], 
    'column3': ['value11', 'value11'], 
    'column4': ['value44', 'value44']
  }, 
  'key2': {
    'column1': ['key2', 'key2'], 
    'column3': ['value22', 'value22'], 
    'column4': ['value55', 'value55']
  }
}
#data_dict2
{
  'key1': {
    'column1': 'key1', 
    'column2': ['value1', 'value2'], 
    'column3': 'value11', 
    'column4': 'value44'
  }, 
  'key2': {
    'column1': 'key2', 
    'column2': ['value1', 'value2'], 
    'column3': 'value22', 
    'column4': 'value55'
  }
}

補充:pandas中,利用groupby分組后,對字符串字段進行合并拼接

在pandas里對于數值字段而言,groupby后可以用sum()、max()等方法進行簡單的處理,對于字符串字段, 如果把它們的值拼接在一起,可以用使用 str.cat() 和 lamda 方法。

如,將下面表格中的內容,對skill字段按照id進行分組合并

實現代碼:

import pandas as pd
file_name='test.xlsx'
df=pd.read_excel(file_name)
data=df.groupby('id')['skill'].apply(lambda x:x.str.cat(sep=':')).reset_index()
print(data)

效果如下:

另,數據處理時,常常需要將某一列進行拆分,分列,替換等,相關的函數有str.split()、str.extract()、str.replace().

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • Pandas中DataFrame的分組/分割/合并的實現
  • pandas 實現分組后取第N行
  • pandas分組排序 如何獲取第二大的數據
  • pandas group分組與agg聚合的實例
  • pandas groupby分組對象的組內排序解決方案
  • pandas組內排序,并在每個分組內按序打上序號的操作

標簽:日照 白城 錦州 天水 安慶 隨州 西安 股票

巨人網絡通訊聲明:本文標題《pandas 實現某一列分組,其他列合并成list》,本文關鍵詞  pandas,實現,某,一列,分組,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pandas 實現某一列分組,其他列合并成list》相關的同類信息!
  • 本頁收集關于pandas 實現某一列分組,其他列合并成list的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 固阳县| 札达县| 年辖:市辖区| 佛冈县| 阜康市| 原阳县| 和硕县| 阿瓦提县| 田阳县| 长岛县| 大宁县| 临夏市| 杭州市| 桐柏县| 金湖县| 恭城| 仙桃市| 故城县| 安宁市| 科尔| 四子王旗| 襄樊市| 大关县| 大同市| 彭州市| 白玉县| 茂名市| 盈江县| 衡南县| 耒阳市| 麻城市| 北安市| 湖南省| 咸丰县| 慈利县| 本溪| 深圳市| 手游| 浦城县| 乐东| 隆尧县|