婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > 詳解pandas apply 并行處理的幾種方法

詳解pandas apply 并行處理的幾種方法

熱門標(biāo)簽:深圳網(wǎng)絡(luò)外呼系統(tǒng)代理商 鎮(zhèn)江人工外呼系統(tǒng)供應(yīng)商 柳州正規(guī)電銷機器人收費 千呼ai電話機器人免費 申請辦個400電話號碼 外呼系統(tǒng)前面有錄音播放嗎 高德地圖標(biāo)注字母 400電話辦理費用收費 騰訊地圖標(biāo)注有什么版本

1. pandarallel (pip install )

對于一個帶有Pandas DataFrame df的簡單用例和一個應(yīng)用func的函數(shù),只需用parallel_apply替換經(jīng)典的apply。

from pandarallel import pandarallel
 
# Initialization
pandarallel.initialize()
 
# Standard pandas apply
df.apply(func)
 
# Parallel apply
df.parallel_apply(func)

注意,如果不想并行化計算,仍然可以使用經(jīng)典的apply方法。

另外可以通過在initialize函數(shù)中傳遞progress_bar=True來顯示每個工作CPU的一個進度條。

2. joblib (pip install )

 https://pypi.python.org/pypi/joblib

# Embarrassingly parallel helper: to make it easy to write readable parallel code and debug it quickly
 
from math import sqrt
from joblib import Parallel, delayed
 
def test():
  start = time.time()
  result1 = Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10000))
  end = time.time()
  print(end-start)
  result2 = Parallel(n_jobs=8)(delayed(sqrt)(i**2) for i in range(10000))
  end2 = time.time()
  print(end2-end)

-------輸出結(jié)果----------

0.4434356689453125
0.6346755027770996

3. multiprocessing

import multiprocessing as mp
 
with mp.Pool(mp.cpu_count()) as pool:
  df['newcol'] = pool.map(f, df['col'])
multiprocessing.cpu_count()

返回系統(tǒng)的CPU數(shù)量。

該數(shù)量不同于當(dāng)前進程可以使用的CPU數(shù)量。可用的CPU數(shù)量可以由 len(os.sched_getaffinity(0)) 方法獲得。

可能引發(fā) NotImplementedError 。

參見os.cpu_count()

4. 幾種方法性能比較

(1)代碼

import sys
import time
import pandas as pd
import multiprocessing as mp
from joblib import Parallel, delayed
from pandarallel import pandarallel
from tqdm import tqdm, tqdm_notebook
 
 
def get_url_len(url):
  url_list = url.split(".")
  time.sleep(0.01) # 休眠0.01秒
  return len(url_list)
 
def test1(data):
  """
  不進行任何優(yōu)化
  """
  start = time.time()
  data['len'] = data['url'].apply(get_url_len)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("res:{}, cost time:{}".format(res, cost_time))
 
def test_mp(data):
  """
  采用mp優(yōu)化
  """
  start = time.time()
  with mp.Pool(mp.cpu_count()) as pool:
    data['len'] = pool.map(get_url_len, data['url'])
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_mp \t res:{}, cost time:{}".format(res, cost_time))
 
def test_pandarallel(data):
  """
  采用pandarallel優(yōu)化
  """
  start = time.time()
  pandarallel.initialize()
  data['len'] = data['url'].parallel_apply(get_url_len)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_pandarallel \t res:{}, cost time:{}".format(res, cost_time))
 
 
def test_delayed(data):
  """
  采用delayed優(yōu)化
  """
  def key_func(subset):
    subset["len"] = subset["url"].apply(get_url_len)
    return subset
 
  start = time.time()
  data_grouped = data.groupby(data.index)
  # data_grouped 是一個可迭代的對象,那么就可以使用 tqdm 來可視化進度條
  results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
  data = pd.concat(results)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_delayed \t res:{}, cost time:{}".format(res, cost_time))
 
 
if __name__ == '__main__':
  
  columns = ['title', 'url', 'pub_old', 'pub_new']
  temp = pd.read_csv("./input.csv", names=columns, nrows=10000)
  data = temp
  """
  for i in range(99):
    data = data.append(temp)
  """
  print(len(data))
  """
  test1(data)
  test_mp(data)
  test_pandarallel(data)
  """
  test_delayed(data)

(2) 結(jié)果輸出

1k
res:4338, cost time:0.0018074512481689453
test_mp   res:4338, cost time:0.2626469135284424
test_pandarallel   res:4338, cost time:0.3467681407928467
 
1w
res:42936, cost time:0.008773326873779297
test_mp   res:42936, cost time:0.26111721992492676
test_pandarallel   res:42936, cost time:0.33237743377685547
 
10w
res:426742, cost time:0.07944369316101074
test_mp   res:426742, cost time:0.294996976852417
test_pandarallel   res:426742, cost time:0.39208269119262695
 
100w
res:4267420, cost time:0.8074917793273926
test_mp   res:4267420, cost time:0.9741342067718506
test_pandarallel   res:4267420, cost time:0.6779992580413818
 
1000w
res:42674200, cost time:8.027287006378174
test_mp   res:42674200, cost time:7.751036882400513
test_pandarallel   res:42674200, cost time:4.404983282089233

在get_url_len函數(shù)里加個sleep語句(模擬復(fù)雜邏輯),數(shù)據(jù)量為1k,運行結(jié)果如下:

1k
res:4338, cost time:10.054503679275513
test_mp   res:4338, cost time:0.35697126388549805
test_pandarallel   res:4338, cost time:0.43415403366088867
test_delayed   res:4338, cost time:2.294757843017578

5. 小結(jié)

(1)如果數(shù)據(jù)量比較少,并行處理比單次執(zhí)行效率更慢;

(2)如果apply的函數(shù)邏輯簡單,并行處理比單次執(zhí)行效率更慢。

6. 問題及解決方法

(1)ImportError: This platform lacks a functioning sem_open implementation, therefore, the required synchronization primitives needed will not function, see issue 3770.

https://www.jianshu.com/p/0be1b4b27bde

(2)Linux查看物理CPU個數(shù)、核數(shù)、邏輯CPU個數(shù)

https://lover.blog.csdn.net/article/details/113951192

(3) 進度條的使用

https://www.jb51.net/article/206219.htm

到此這篇關(guān)于詳解pandas apply 并行處理的幾種方法的文章就介紹到這了,更多相關(guān)pandas apply 并行處理內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • pandas中apply和transform方法的性能比較及區(qū)別介紹
  • 對pandas中apply函數(shù)的用法詳解
  • pandas 使用apply同時處理兩列數(shù)據(jù)的方法
  • pandas apply 函數(shù) 實現(xiàn)多進程的示例講解
  • pandas使用apply多列生成一列數(shù)據(jù)的實例
  • pandas apply多線程實現(xiàn)代碼
  • pandas使用函數(shù)批量處理數(shù)據(jù)(map、apply、applymap)
  • pandas提升計算效率的一些方法匯總

標(biāo)簽:合肥 哈爾濱 大慶 烏蘭察布 烏蘭察布 平頂山 海南 郴州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《詳解pandas apply 并行處理的幾種方法》,本文關(guān)鍵詞  詳解,pandas,apply,并行,處理,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《詳解pandas apply 并行處理的幾種方法》相關(guān)的同類信息!
  • 本頁收集關(guān)于詳解pandas apply 并行處理的幾種方法的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    欧美mv日韩mv| 一区二区三区中文字幕电影| 激情综合网最新| 国产69精品久久777的优势| 欧美日韩精品综合在线| 亚洲国产精品影院| 欧美影视一区二区三区| 亚洲码国产岛国毛片在线| 大桥未久av一区二区三区中文| 日韩精品中文字幕一区| 久久99久久99小草精品免视看| 91精品国产欧美日韩| 亚洲一二三区在线观看| 91精品国产综合久久久蜜臀粉嫩| 视频一区欧美精品| 日韩亚洲欧美高清| 成人av中文字幕| 午夜婷婷国产麻豆精品| 精品欧美乱码久久久久久1区2区| 国产精品一区二区果冻传媒| 国产精品精品国产色婷婷| 色婷婷亚洲精品| 日韩精品成人一区二区三区| 久久久精品综合| 91网上在线视频| 亚洲一区欧美一区| 日韩欧美国产综合在线一区二区三区| 国产一区二区三区四| 国产精品久久影院| 欧美老女人第四色| 国产成人免费在线视频| 一区二区三区精品在线| 久久在线观看免费| 色欧美乱欧美15图片| 久久精品国产亚洲高清剧情介绍 | 日韩一区二区三区在线视频| 国产成人福利片| 一区二区三区精品| 亚洲国产精品黑人久久久| 欧美日韩aaaaaa| av一区二区久久| 久久精品国产成人一区二区三区 | 久久电影国产免费久久电影| 亚洲天堂久久久久久久| 精品少妇一区二区三区在线播放| 日本韩国一区二区| 岛国一区二区三区| 国产在线国偷精品免费看| 亚洲国产精品一区二区久久恐怖片| 久久久五月婷婷| 日韩一区二区免费视频| 在线视频你懂得一区二区三区| 国产成a人亚洲| 蜜桃av噜噜一区| 午夜视频在线观看一区二区 | 青娱乐精品在线视频| 亚洲三级免费观看| 国产精品久久久久四虎| 久久久一区二区三区捆绑**| 在线综合视频播放| 91社区在线播放| 成人app下载| 国产精品一二三区在线| 麻豆精品一二三| 美女脱光内衣内裤视频久久影院| 亚洲一区二区三区视频在线| 欧美日韩第一区日日骚| 欧美精品1区2区| 欧美精品一二三四| 在线观看欧美日本| 在线精品视频一区二区三四 | 国产成人亚洲综合a∨婷婷| 麻豆精品视频在线观看视频| 亚洲福利一二三区| 中文字幕一区二区在线播放| 国产三级欧美三级| 欧美国产欧美亚州国产日韩mv天天看完整| 久久综合五月天婷婷伊人| 欧美精彩视频一区二区三区| 国产精品国产精品国产专区不片| 中文字幕亚洲综合久久菠萝蜜| 中文字幕中文乱码欧美一区二区 | 国产成人高清在线| 亚洲成av人片在线观看| 蜜臀久久久99精品久久久久久| 色呦呦国产精品| 色婷婷av久久久久久久| 欧美区一区二区三区| 日韩欧美国产三级电影视频| 国产精品午夜春色av| 亚洲最大色网站| 水蜜桃久久夜色精品一区的特点 | 亚洲一区二区三区四区在线观看 | 国产一区三区三区| 成人污视频在线观看| 日本福利一区二区| 精品国产伦一区二区三区观看方式| 国产亚洲精品免费| 亚洲国产成人高清精品| 精品一区二区av| 91免费看片在线观看| 精品国产乱码久久久久久蜜臀| 中文字幕国产一区二区| 首页欧美精品中文字幕| 国产美女精品在线| 欧美日本韩国一区二区三区视频 | 狠狠狠色丁香婷婷综合激情| 97久久人人超碰| 欧美mv日韩mv亚洲| 一区二区欧美视频| 国产成人aaaa| 日韩免费福利电影在线观看| 亚洲精品国产成人久久av盗摄 | 中文字幕免费在线观看视频一区| 亚洲资源在线观看| 国产福利一区二区三区在线视频| 88在线观看91蜜桃国自产| 国产精品丝袜黑色高跟| 免费久久99精品国产| 欧美伊人精品成人久久综合97| 国产婷婷色一区二区三区四区| 日韩—二三区免费观看av| 色94色欧美sute亚洲13| 国产精品毛片a∨一区二区三区 | 成人av在线播放网址| 精品91自产拍在线观看一区| 一区二区日韩av| a在线播放不卡| 中文字幕第一区| 国产精品综合在线视频| 欧美成人vr18sexvr| 韩国精品主播一区二区在线观看 | 欧美激情在线观看视频免费| 麻豆精品视频在线观看免费| 欧美一区在线视频| 亚洲二区在线视频| 91老司机福利 在线| 最新热久久免费视频| 丰满放荡岳乱妇91ww| 国产精品午夜在线| 99久久精品国产一区二区三区 | 亚洲一区二区黄色| 色婷婷精品久久二区二区蜜臀av| 亚洲视频在线一区二区| 99这里只有精品| 亚洲欧美一区二区在线观看| 91免费精品国自产拍在线不卡 | 日本欧美在线观看| 日韩视频在线一区二区| 麻豆一区二区三| 久久婷婷色综合| 国产成人综合在线播放| 国产性色一区二区| 91视视频在线直接观看在线看网页在线看| 中文av一区二区| 欧洲亚洲国产日韩| 手机精品视频在线观看| 欧美一区二区大片| 国产麻豆一精品一av一免费| 国产欧美日韩麻豆91| 色老汉一区二区三区| 日韩电影免费一区| 日韩视频一区二区在线观看| 国产精品一区二区久久不卡| 亚洲欧美视频在线观看| 在线播放亚洲一区| 成人一区二区视频| 亚洲福利视频三区| 精品久久久久久久久久久院品网 | 久久网站热最新地址| 91在线视频播放| 日本怡春院一区二区| 欧美成人激情免费网| 99re66热这里只有精品3直播| 亚洲成av人片| 国产日韩成人精品| 欧美视频一二三区| 久久av老司机精品网站导航| 亚洲黄色小视频| 91精品啪在线观看国产60岁| 成人午夜精品在线| 日韩精品1区2区3区| 最近中文字幕一区二区三区| 日韩一区二区麻豆国产| 在线免费亚洲电影| 欧美日韩国产精品成人| 国产不卡视频在线观看| 日本成人超碰在线观看| 亚洲免费观看高清完整版在线观看| 日韩免费性生活视频播放| 日本精品视频一区二区| 国产乱码精品一区二区三区五月婷| 午夜精品一区二区三区三上悠亚| 中文字幕一区二区三区色视频 | 91精品国产综合久久香蕉的特点| 国产激情视频一区二区三区欧美| 奇米精品一区二区三区四区| 国产精品久久久久久久久搜平片 | 欧美一级黄色录像| 欧美亚洲综合网|