婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > Python之Sklearn使用入門教程

Python之Sklearn使用入門教程

熱門標(biāo)簽:騰訊地圖標(biāo)注有什么版本 千呼ai電話機(jī)器人免費(fèi) 深圳網(wǎng)絡(luò)外呼系統(tǒng)代理商 400電話辦理費(fèi)用收費(fèi) 柳州正規(guī)電銷機(jī)器人收費(fèi) 鎮(zhèn)江人工外呼系統(tǒng)供應(yīng)商 高德地圖標(biāo)注字母 外呼系統(tǒng)前面有錄音播放嗎 申請辦個400電話號碼

1.Sklearn簡介

Scikit-learn(sklearn)是機(jī)器學(xué)習(xí)中常用的第三方模塊,對常用的機(jī)器學(xué)習(xí)方法進(jìn)行了封裝,包括回歸(Regression)、降維(Dimensionality Reduction)、分類(Classfication)、聚類(Clustering)等方法。當(dāng)我們面臨機(jī)器學(xué)習(xí)問題時,便可根據(jù)下圖來選擇相應(yīng)的方法。Sklearn具有以下特點(diǎn):

  • 簡單高效的數(shù)據(jù)挖掘和數(shù)據(jù)分析工具
  • 讓每個人能夠在復(fù)雜環(huán)境中重復(fù)使用
  • 建立NumPy、Scipy、MatPlotLib之上

2.Sklearn安裝

Sklearn安裝要求Python(>=2.7 or >=3.3)、NumPy (>= 1.8.2)、SciPy (>= 0.13.3)。如果已經(jīng)安裝NumPy和SciPy,安裝scikit-learn可以使用pip install -U scikit-learn。

3.Sklearn通用學(xué)習(xí)模式

Sklearn中包含眾多機(jī)器學(xué)習(xí)方法,但各種學(xué)習(xí)方法大致相同,我們在這里介紹Sklearn通用學(xué)習(xí)模式。首先引入需要訓(xùn)練的數(shù)據(jù),Sklearn自帶部分?jǐn)?shù)據(jù)集,也可以通過相應(yīng)方法進(jìn)行構(gòu)造,4.Sklearn datasets中我們會介紹如何構(gòu)造數(shù)據(jù)。然后選擇相應(yīng)機(jī)器學(xué)習(xí)方法進(jìn)行訓(xùn)練,訓(xùn)練過程中可以通過一些技巧調(diào)整參數(shù),使得學(xué)習(xí)準(zhǔn)確率更高。模型訓(xùn)練完成之后便可預(yù)測新數(shù)據(jù),然后我們還可以通過MatPlotLib等方法來直觀的展示數(shù)據(jù)。另外還可以將我們已訓(xùn)練好的Model進(jìn)行保存,方便移動到其他平臺,不必重新訓(xùn)練。

from sklearn import datasets#引入數(shù)據(jù)集,sklearn包含眾多數(shù)據(jù)集
from sklearn.model_selection import train_test_split#將數(shù)據(jù)分為測試集和訓(xùn)練集
from sklearn.neighbors import KNeighborsClassifier#利用鄰近點(diǎn)方式訓(xùn)練數(shù)據(jù)

###引入數(shù)據(jù)###
iris=datasets.load_iris()#引入iris鳶尾花數(shù)據(jù),iris數(shù)據(jù)包含4個特征變量
iris_X=iris.data#特征變量
iris_y=iris.target#目標(biāo)值
X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3)#利用train_test_split進(jìn)行將訓(xùn)練集和測試集進(jìn)行分開,test_size占30%
print(y_train)#我們看到訓(xùn)練數(shù)據(jù)的特征值分為3類
'''
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]
 '''

###訓(xùn)練數(shù)據(jù)###
knn=KNeighborsClassifier()#引入訓(xùn)練方法
knn.fit(X_train,y_train)#進(jìn)行填充測試數(shù)據(jù)進(jìn)行訓(xùn)練

###預(yù)測數(shù)據(jù)###
print(knn.predict(X_test))#預(yù)測特征值
'''
[1 1 1 0 2 2 1 1 1 0 0 0 2 2 0 1 2 2 0 1 0 0 0 0 0 0 2 1 0 0 0 1 0 2 0 2 0
 1 2 1 0 0 1 0 2]
'''
print(y_test)#真實(shí)特征值
'''
[1 1 1 0 1 2 1 1 1 0 0 0 2 2 0 1 2 2 0 1 0 0 0 0 0 0 2 1 0 0 0 1 0 2 0 2 0
 1 2 1 0 0 1 0 2]
'''

4.Sklearn datasets

Sklearn提供一些標(biāo)準(zhǔn)數(shù)據(jù),我們不必再從其他網(wǎng)站尋找數(shù)據(jù)進(jìn)行訓(xùn)練。例如我們上面用來訓(xùn)練的load_iris數(shù)據(jù),可以很方便的返回數(shù)據(jù)特征變量和目標(biāo)值。除了引入數(shù)據(jù)之外,我們還可以通過load_sample_images()來引入圖片。

除了sklearn提供的一些數(shù)據(jù)之外,還可以自己來構(gòu)造一些數(shù)據(jù)幫助我們學(xué)習(xí)。

from sklearn import datasets#引入數(shù)據(jù)集
#構(gòu)造的各種參數(shù)可以根據(jù)自己需要調(diào)整
X,y=datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=1)

###繪制構(gòu)造的數(shù)據(jù)###
import matplotlib.pyplot as plt
plt.figure()
plt.scatter(X,y)
plt.show()

5.Sklearn Model的屬性和功能

數(shù)據(jù)訓(xùn)練完成之后得到模型,我們可以根據(jù)不同模型得到相應(yīng)的屬性和功能,并將其輸出得到直觀結(jié)果。假如通過線性回歸訓(xùn)練之后得到線性函數(shù)y=0.3x+1,我們可通過_coef得到模型的系數(shù)為0.3,通過_intercept得到模型的截距為1。

from sklearn import datasets
from sklearn.linear_model import LinearRegression#引入線性回歸模型

###引入數(shù)據(jù)###
load_data=datasets.load_boston()
data_X=load_data.data
data_y=load_data.target
print(data_X.shape)
#(506, 13)data_X共13個特征變量

###訓(xùn)練數(shù)據(jù)###
model=LinearRegression()
model.fit(data_X,data_y)
model.predict(data_X[:4,:])#預(yù)測前4個數(shù)據(jù)

###屬性和功能###
print(model.coef_)
'''
[ -1.07170557e-01  4.63952195e-02  2.08602395e-02  2.68856140e+00
 -1.77957587e+01  3.80475246e+00  7.51061703e-04 -1.47575880e+00
  3.05655038e-01 -1.23293463e-02 -9.53463555e-01  9.39251272e-03
 -5.25466633e-01]
'''
print(model.intercept_)
#36.4911032804
print(model.get_params())#得到模型的參數(shù)
#{'copy_X': True, 'normalize': False, 'n_jobs': 1, 'fit_intercept': True}
print(model.score(data_X,data_y))#對訓(xùn)練情況進(jìn)行打分
#0.740607742865

6.Sklearn數(shù)據(jù)預(yù)處理

數(shù)據(jù)集的標(biāo)準(zhǔn)化對于大部分機(jī)器學(xué)習(xí)算法來說都是一種常規(guī)要求,如果單個特征沒有或多或少地接近于標(biāo)準(zhǔn)正態(tài)分布,那么它可能并不能在項目中表現(xiàn)出很好的性能。在實(shí)際情況中,我們經(jīng)常忽略特征的分布形狀,直接去均值來對某個特征進(jìn)行中心化,再通過除以非常量特征(non-constant features)的標(biāo)準(zhǔn)差進(jìn)行縮放。

例如, 許多學(xué)習(xí)算法中目標(biāo)函數(shù)的基礎(chǔ)都是假設(shè)所有的特征都是零均值并且具有同一階數(shù)上的方差(比如徑向基函數(shù)、支持向量機(jī)以及L1L2正則化項等)。如果某個特征的方差比其他特征大幾個數(shù)量級,那么它就會在學(xué)習(xí)算法中占據(jù)主導(dǎo)位置,導(dǎo)致學(xué)習(xí)器并不能像我們說期望的那樣,從其他特征中學(xué)習(xí)。例如我們可以通過Scale將數(shù)據(jù)縮放,達(dá)到標(biāo)準(zhǔn)化的目的。

from sklearn import preprocessing
import numpy as np
a=np.array([[10,2.7,3.6],
      [-100,5,-2],
      [120,20,40]],dtype=np.float64)
print(a)
print(preprocessing.scale(a))#將值的相差度減小
'''
[[ 10.   2.7  3.6]
 [-100.   5.  -2. ]
 [ 120.  20.  40
[[ 0.     -0.85170713 -0.55138018]
 [-1.22474487 -0.55187146 -0.852133 ]
 [ 1.22474487 1.40357859 1.40351318]]
'''

我們來看下預(yù)處理前和預(yù)處理預(yù)處理后的差別,預(yù)處理之前模型評分為0.511111111111,預(yù)處理后模型評分為0.933333333333,可以看到預(yù)處理對模型評分有很大程度的提升。

from sklearn.model_selection import train_test_split
from sklearn.datasets.samples_generator import make_classification
from sklearn.svm import SVC
import matplotlib.pyplot as plt

###生成的數(shù)據(jù)如下圖所示###
plt.figure
X,y=make_classification(n_samples=300,n_features=2,n_redundant=0,n_informative=2,       random_state=22,n_clusters_per_class=1,scale=100)
plt.scatter(X[:,0],X[:,1],c=y)
plt.show()

###利用minmax方式對數(shù)據(jù)進(jìn)行規(guī)范化###
X=preprocessing.minmax_scale(X)#feature_range=(-1,1)可設(shè)置重置范圍
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
clf=SVC()
clf.fit(X_train,y_train)
print(clf.score(X_test,y_test))
#0.933333333333
#沒有規(guī)范化之前我們的訓(xùn)練分?jǐn)?shù)為0.511111111111,規(guī)范化后為0.933333333333,準(zhǔn)確度有很大提升

7.交叉驗證

交叉驗證的基本思想是將原始數(shù)據(jù)進(jìn)行分組,一部分做為訓(xùn)練集來訓(xùn)練模型,另一部分做為測試集來評價模型。交叉驗證用于評估模型的預(yù)測性能,尤其是訓(xùn)練好的模型在新數(shù)據(jù)上的表現(xiàn),可以在一定程度上減小過擬合。還可以從有限的數(shù)據(jù)中獲取盡可能多的有效信息。

機(jī)器學(xué)習(xí)任務(wù)中,拿到數(shù)據(jù)后,我們首先會將原始數(shù)據(jù)集分為三部分:訓(xùn)練集、驗證集和測試集。 訓(xùn)練集用于訓(xùn)練模型,驗證集用于模型的參數(shù)選擇配置,測試集對于模型來說是未知數(shù)據(jù),用于評估模型的泛化能力。不同的劃分會得到不同的最終模型。

以前我們是直接將數(shù)據(jù)分割成70%的訓(xùn)練數(shù)據(jù)和測試數(shù)據(jù),現(xiàn)在我們利用K折交叉驗證分割數(shù)據(jù),首先將數(shù)據(jù)分為5組,然后再從5組數(shù)據(jù)之中選擇不同數(shù)據(jù)進(jìn)行訓(xùn)練。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

###引入數(shù)據(jù)###
iris=load_iris()
X=iris.data
y=iris.target

###訓(xùn)練數(shù)據(jù)###
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
#引入交叉驗證,數(shù)據(jù)分為5組進(jìn)行訓(xùn)練
from sklearn.model_selection import cross_val_score
knn=KNeighborsClassifier(n_neighbors=5)#選擇鄰近的5個點(diǎn)
scores=cross_val_score(knn,X,y,cv=5,scoring='accuracy')#評分方式為accuracy
print(scores)#每組的評分結(jié)果
#[ 0.96666667 1.     0.93333333 0.96666667 1.    ]5組數(shù)據(jù)
print(scores.mean())#平均評分結(jié)果
#0.973333333333

那么是否n_neighbor=5便是最好呢,我們來調(diào)整參數(shù)來看模型最終訓(xùn)練分?jǐn)?shù)。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score#引入交叉驗證
import matplotlib.pyplot as plt
###引入數(shù)據(jù)###
iris=datasets.load_iris()
X=iris.data
y=iris.target
###設(shè)置n_neighbors的值為1到30,通過繪圖來看訓(xùn)練分?jǐn)?shù)###
k_range=range(1,31)
k_score=[]
for k in k_range:
  knn=KNeighborsClassifier(n_neighbors=k)
  scores=cross_val_score(knn,X,y,cv=10,scoring='accuracy')#for classfication
  k_score.append(scores.mean())
plt.figure()
plt.plot(k_range,k_score)
plt.xlabel('Value of k for KNN')
plt.ylabel('CrossValidation accuracy')
plt.show()
#K過大會帶來過擬合問題,我們可以選擇12-18之間的值

我們可以看到n_neighbor在12-18之間評分比較高,實(shí)際項目之中我們可以通過這種方式來選擇不同參數(shù)。另外我們還可以選擇2-fold Cross Validation,Leave-One-Out Cross Validation等方法來分割數(shù)據(jù),比較不同方法和參數(shù)得到最優(yōu)結(jié)果。

我們將上述代碼中的循環(huán)部分改變一下,評分函數(shù)改為neg_mean_squared_error,便得到對于不同參數(shù)時的損失函數(shù)。

for k in k_range:
  knn=KNeighborsClassifier(n_neighbors=k)
  loss=-cross_val_score(knn,X,y,cv=10,scoring='neg_mean_squared_error')# for regression
  k_score.append(loss.mean())

8.過擬合問題

什么是過擬合問題呢?例如下面這張圖片,黑色線已經(jīng)可以很好的分類出紅色點(diǎn)和藍(lán)色點(diǎn),但是在機(jī)器學(xué)習(xí)過程中,模型過于糾結(jié)準(zhǔn)確度,便形成了綠色線的結(jié)果。然后在預(yù)測測試數(shù)據(jù)集結(jié)果的過程中往往會浪費(fèi)很多時間并且準(zhǔn)確率不是太好。

我們先舉例如何辨別overfitting問題。Sklearn.learning_curve中的learning curve可以很直觀的看出Model學(xué)習(xí)的進(jìn)度,對比發(fā)現(xiàn)有沒有過擬合。

from sklearn.model_selection import learning_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

#引入數(shù)據(jù)
digits=load_digits()
X=digits.data
y=digits.target

#train_size表示記錄學(xué)習(xí)過程中的某一步,比如在10%,25%...的過程中記錄一下
train_size,train_loss,test_loss=learning_curve(
  SVC(gamma=0.1),X,y,cv=10,scoring='neg_mean_squared_error',
  train_sizes=[0.1,0.25,0.5,0.75,1]
)
train_loss_mean=-np.mean(train_loss,axis=1)
test_loss_mean=-np.mean(test_loss,axis=1)

plt.figure()
#將每一步進(jìn)行打印出來
plt.plot(train_size,train_loss_mean,'o-',color='r',label='Training')
plt.plot(train_size,test_loss_mean,'o-',color='g',label='Cross-validation')
plt.legend('best')
plt.show()

如果我們改變gamma的值,那么會改變相應(yīng)的Loss函數(shù)。損失函數(shù)便在10左右停留,此時便能直觀的看出過擬合。

下面我們通過修改gamma參數(shù)來修正過擬合問題。

from sklearn.model_selection import validation_curve#將learning_curve改為validation_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np
#引入數(shù)據(jù)
digits=load_digits()
X=digits.data
y=digits.target

#改變param來觀察Loss函數(shù)情況
param_range=np.logspace(-6,-2.3,5)
train_loss,test_loss=validation_curve(
  SVC(),X,y,param_name='gamma',param_range=param_range,cv=10,
  scoring='neg_mean_squared_error'
)
train_loss_mean=-np.mean(train_loss,axis=1)
test_loss_mean=-np.mean(test_loss,axis=1)

plt.figure()
plt.plot(param_range,train_loss_mean,'o-',color='r',label='Training')
plt.plot(param_range,test_loss_mean,'o-',color='g',label='Cross-validation')
plt.xlabel('gamma')
plt.ylabel('loss')
plt.legend(loc='best')
plt.show()

通過改變不同的gamma值我們可以看到Loss函數(shù)的變化情況。從圖中可以看到,如果gamma的值大于0.001便會出現(xiàn)過擬合的問題,那么我們構(gòu)建模型時gamma參數(shù)設(shè)置應(yīng)該小于0.001。

9.保存模型

我們花費(fèi)很長時間用來訓(xùn)練數(shù)據(jù),調(diào)整參數(shù),得到最優(yōu)模型。但如果改變平臺,我們還需要重新訓(xùn)練數(shù)據(jù)和修正參數(shù)來得到模型,將會非常的浪費(fèi)時間。此時我們可以先將model保存起來,然后便可以很方便的將模型遷移。

from sklearn import svm
from sklearn import datasets

#引入和訓(xùn)練數(shù)據(jù)
iris=datasets.load_iris()
X,y=iris.data,iris.target
clf=svm.SVC()
clf.fit(X,y)

#引入sklearn中自帶的保存模塊
from sklearn.externals import joblib
#保存model
joblib.dump(clf,'sklearn_save/clf.pkl')

#重新加載model,只有保存一次后才能加載model
clf3=joblib.load('sklearn_save/clf.pkl')
print(clf3.predict(X[0:1]))
#存放model能夠更快的獲得以前的結(jié)果

參考鏈接

此文檔整理自莫煩sklearn視頻教程,鏈接為https://morvanzhou.github.io/tutorials/machine-learning/sklearn/。

到此這篇關(guān)于Python之Sklearn使用入門教程的文章就介紹到這了,更多相關(guān)Sklearn 入門內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python數(shù)據(jù)分析之用sklearn預(yù)測糖尿病
  • 運(yùn)行python提示no module named sklearn的解決方法
  • python安裝sklearn模塊的方法詳解
  • python3.6中anaconda安裝sklearn踩坑實(shí)錄
  • Python sklearn中的.fit與.predict的用法說明
  • python實(shí)點(diǎn)云分割k-means(sklearn)詳解
  • python中sklearn的pipeline模塊實(shí)例詳解
  • python實(shí)現(xiàn)密度聚類(模板代碼+sklearn代碼)
  • python sklearn包——混淆矩陣、分類報告等自動生成方式
  • Python sklearn庫實(shí)現(xiàn)PCA教程(以鳶尾花分類為例)
  • Python 機(jī)器學(xué)習(xí)工具包SKlearn的安裝與使用

標(biāo)簽:大慶 合肥 烏蘭察布 郴州 海南 哈爾濱 平頂山 烏蘭察布

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Python之Sklearn使用入門教程》,本文關(guān)鍵詞  Python,之,Sklearn,使用,入門教程,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Python之Sklearn使用入門教程》相關(guān)的同類信息!
  • 本頁收集關(guān)于Python之Sklearn使用入門教程的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    一级精品视频在线观看宜春院| 欧洲av一区二区嗯嗯嗯啊| 欧美成人精精品一区二区频| 粉嫩久久99精品久久久久久夜| 婷婷亚洲久悠悠色悠在线播放| 国产偷国产偷亚洲高清人白洁| 在线观看欧美精品| 国产精品一区二区在线看| 亚洲成人av一区二区三区| 久久久蜜桃精品| 日韩欧美一区中文| 欧美久久免费观看| 99久久综合99久久综合网站| 激情图片小说一区| 日韩激情视频网站| 色综合久久综合网| 夫妻av一区二区| 国产精品一区二区果冻传媒| 91免费观看国产| 首页国产丝袜综合| 水野朝阳av一区二区三区| 亚洲第一搞黄网站| 首页综合国产亚洲丝袜| 日本美女一区二区三区视频| 国产黑丝在线一区二区三区| 久久久久亚洲综合| 国产网红主播福利一区二区| 久久精品视频在线看| 国产精品久久久久久久久久免费看 | 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 国产91丝袜在线播放0| 成人午夜电影久久影院| 99久久精品国产观看| 欧美日韩午夜在线| 欧美电视剧在线看免费| 2023国产精品| 中文字幕国产精品一区二区| 国产精品乱码久久久久久| 国产精品天美传媒| 色婷婷一区二区三区四区| 欧美综合天天夜夜久久| 8x8x8国产精品| 精品国产一区二区三区久久影院| 久久精品视频一区| 综合欧美亚洲日本| 日韩av中文字幕一区二区| 精品在线观看免费| 国产成人精品免费一区二区| 久久久国产精品午夜一区ai换脸| 亚洲欧洲99久久| voyeur盗摄精品| 成人美女在线视频| 欧美亚洲精品一区| 精品国免费一区二区三区| 国产亚洲欧洲一区高清在线观看| 亚洲天堂精品在线观看| 日韩成人精品视频| av电影在线观看一区| 欧美一区二区国产| 亚洲视频在线观看一区| 老司机精品视频线观看86| 99精品在线免费| 久久免费美女视频| 五月开心婷婷久久| 成人性生交大片免费看视频在线| 日韩一区二区视频在线观看| 亚洲尤物在线视频观看| 国产成人精品网址| 欧美成人艳星乳罩| 午夜精品一区二区三区三上悠亚| k8久久久一区二区三区| 日韩av在线免费观看不卡| 91在线无精精品入口| 日韩欧美专区在线| 午夜在线成人av| 欧美亚洲国产bt| 亚洲欧美在线aaa| 成人黄色av电影| 久久久噜噜噜久久中文字幕色伊伊 | 国产精品伊人色| 欧美日韩国产系列| 亚洲精品欧美激情| 一本久道久久综合中文字幕| 亚洲福利视频一区| 欧美私模裸体表演在线观看| 亚洲毛片av在线| 成+人+亚洲+综合天堂| 日本一区二区三区视频视频| 国产一区二区三区在线观看免费视频| 91精品蜜臀在线一区尤物| 亚洲成人一区二区| 欧美日韩久久久一区| 一区二区三区四区中文字幕| av网站一区二区三区| 国产精品久久久久久久久免费相片| 国产999精品久久| 国产欧美日韩在线看| 成人精品视频一区二区三区尤物| 国产亚洲精品免费| 日韩三级视频中文字幕| 日本不卡一二三| 精品久久一二三区| 国产一区二区网址| 国产日韩欧美一区二区三区乱码| 从欧美一区二区三区| 亚洲日本乱码在线观看| 欧美午夜寂寞影院| 亚洲.国产.中文慕字在线| 欧美精品一二三四| 国产九九视频一区二区三区| 精品国产亚洲在线| 另类的小说在线视频另类成人小视频在线| 欧美一区二区精品在线| 黄色精品一二区| 国产精品精品国产色婷婷| 在线观看区一区二| 青青国产91久久久久久| 久久久久久久综合色一本| 国产大陆亚洲精品国产| 欧美精品一区视频| 色综合亚洲欧洲| 午夜欧美大尺度福利影院在线看| 久久精品国产99国产| 精品91自产拍在线观看一区| 粉嫩高潮美女一区二区三区| 中文字幕一区av| 日韩一区二区中文字幕| 成av人片一区二区| 欧美aaa在线| 日韩码欧中文字| 精品国产露脸精彩对白 | 9191国产精品| 精品一区二区三区在线观看国产 | 国产精品系列在线| 欧美亚洲免费在线一区| 国产一区二区三区观看| 亚洲高清不卡在线| 国产精品少妇自拍| 欧美电视剧在线看免费| 精品国产精品网麻豆系列| 欧美国产激情一区二区三区蜜月 | 久久综合色8888| 欧美三级在线播放| 成人国产亚洲欧美成人综合网| 午夜精品在线看| 亚洲男人天堂av| 国产精品天美传媒沈樵| 日韩精品自拍偷拍| 欧美手机在线视频| 一本一道综合狠狠老| 国产一区二区日韩精品| 午夜精品影院在线观看| 最好看的中文字幕久久| 久久久久国产精品免费免费搜索| 欧美色图在线观看| 在线免费观看日本欧美| 成人听书哪个软件好| 国产欧美一区二区三区网站| 欧美成人精精品一区二区频| 在线播放/欧美激情| 欧美午夜一区二区三区| 97se亚洲国产综合自在线| 国产99久久久国产精品免费看| 亚洲精品免费在线观看| 欧美激情中文字幕一区二区| 精品毛片乱码1区2区3区| 欧美年轻男男videosbes| 色综合久久综合网97色综合| 成人av综合在线| 国产成人午夜视频| 国产91在线观看丝袜| 国产成人精品影院| 国产成人精品亚洲777人妖| 国产一区二区美女诱惑| 奇米一区二区三区av| 婷婷一区二区三区| 亚洲一二三四区| 亚洲激情图片小说视频| 亚洲一本大道在线| 日日噜噜夜夜狠狠视频欧美人 | 欧美日韩综合在线免费观看| 色哟哟欧美精品| 色综合色狠狠综合色| 色综合中文字幕国产| 99re这里只有精品首页| 91色视频在线| 欧美做爰猛烈大尺度电影无法无天| 欧美制服丝袜第一页| 欧美二区乱c少妇| 精品久久人人做人人爰| 中文字幕av一区二区三区| 综合激情成人伊人| 亚洲自拍偷拍综合| 日本不卡视频在线观看| 国产激情偷乱视频一区二区三区| 国产91富婆露脸刺激对白| 成人高清伦理免费影院在线观看| 色国产精品一区在线观看| 美脚の诱脚舐め脚责91 | 欧美日韩亚洲综合|