婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > Pandas實(shí)現(xiàn)Dataframe的重排和旋轉(zhuǎn)

Pandas實(shí)現(xiàn)Dataframe的重排和旋轉(zhuǎn)

熱門標(biāo)簽:百度地圖標(biāo)注位置怎么修改 梅州外呼業(yè)務(wù)系統(tǒng) 北京電信外呼系統(tǒng)靠譜嗎 大連crm外呼系統(tǒng) 高德地圖標(biāo)注是免費(fèi)的嗎 洪澤縣地圖標(biāo)注 地圖標(biāo)注視頻廣告 無錫客服外呼系統(tǒng)一般多少錢 老人電話機(jī)器人

簡介

使用Pandas的pivot方法可以將DF進(jìn)行旋轉(zhuǎn)變換,本文將會詳細(xì)講解pivot的秘密。

使用Pivot

pivot用來重組DF,使用指定的index,columns和values來對現(xiàn)有的DF進(jìn)行重構(gòu)。

看一個(gè)Pivot的例子:

通過pivot變化,新的DF使用foo中的值作為index,使用bar的值作為columns,zoo作為對應(yīng)的value。

再看一個(gè)時(shí)間變化的例子:

In [1]: df
Out[1]: 
         date variable     value
0  2000-01-03        A  0.469112
1  2000-01-04        A -0.282863
2  2000-01-05        A -1.509059
3  2000-01-03        B -1.135632
4  2000-01-04        B  1.212112
5  2000-01-05        B -0.173215
6  2000-01-03        C  0.119209
7  2000-01-04        C -1.044236
8  2000-01-05        C -0.861849
9  2000-01-03        D -2.104569
10 2000-01-04        D -0.494929
11 2000-01-05        D  1.071804
In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]: 
variable           A         B         C         D
date                                              
2000-01-03  0.469112 -1.135632  0.119209 -2.104569
2000-01-04 -0.282863  1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849  1.071804

如果剩余的value,多于一列的話,每一列都會有相應(yīng)的columns值:

In [4]: df['value2'] = df['value'] * 2

In [5]: pivoted = df.pivot(index='date', columns='variable')

In [6]: pivoted
Out[6]: 
               value                                  value2                              
variable           A         B         C         D         A         B         C         D
date                                                                                      
2000-01-03  0.469112 -1.135632  0.119209 -2.104569  0.938225 -2.271265  0.238417 -4.209138
2000-01-04 -0.282863  1.212112 -1.044236 -0.494929 -0.565727  2.424224 -2.088472 -0.989859
2000-01-05 -1.509059 -0.173215 -0.861849  1.071804 -3.018117 -0.346429 -1.723698  2.143608

通過選擇value2,可以得到相應(yīng)的子集:

In [7]: pivoted['value2']
Out[7]: 
variable           A         B         C         D
date                                              
2000-01-03  0.938225 -2.271265  0.238417 -4.209138
2000-01-04 -0.565727  2.424224 -2.088472 -0.989859
2000-01-05 -3.018117 -0.346429 -1.723698  2.143608

使用Stack

Stack是對DF進(jìn)行轉(zhuǎn)換,將列轉(zhuǎn)換為新的內(nèi)部的index。

上面我們將列A,B轉(zhuǎn)成了index。

unstack是stack的反向操作,是將最內(nèi)層的index轉(zhuǎn)換為對應(yīng)的列。

舉個(gè)具體的例子:

In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
   ...:                      'foo', 'foo', 'qux', 'qux'],
   ...:                     ['one', 'two', 'one', 'two',
   ...:                      'one', 'two', 'one', 'two']]))
   ...: 

In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]

In [12]: df2
Out[12]: 
                     A         B
first second                    
bar   one     0.721555 -0.706771
      two    -1.039575  0.271860
baz   one    -0.424972  0.567020
      two     0.276232 -1.087401
In [13]: stacked = df2.stack()

In [14]: stacked
Out[14]: 
first  second   
bar    one     A    0.721555
               B   -0.706771
       two     A   -1.039575
               B    0.271860
baz    one     A   -0.424972
               B    0.567020
       two     A    0.276232
               B   -1.087401
dtype: float64

默認(rèn)情況下unstack是unstack最后一個(gè)index,我們還可以指定特定的index值:

In [15]: stacked.unstack()
Out[15]: 
                     A         B
first second                    
bar   one     0.721555 -0.706771
      two    -1.039575  0.271860
baz   one    -0.424972  0.567020
      two     0.276232 -1.087401

In [16]: stacked.unstack(1)
Out[16]: 
second        one       two
first                      
bar   A  0.721555 -1.039575
      B -0.706771  0.271860
baz   A -0.424972  0.276232
      B  0.567020 -1.087401

In [17]: stacked.unstack(0)
Out[17]: 
first          bar       baz
second                      
one    A  0.721555 -0.424972
       B -0.706771  0.567020
two    A -1.039575  0.276232
       B  0.271860 -1.087401

默認(rèn)情況下stack只會stack一個(gè)level,還可以傳入多個(gè)level:

In [23]: columns = pd.MultiIndex.from_tuples([
   ....:     ('A', 'cat', 'long'), ('B', 'cat', 'long'),
   ....:     ('A', 'dog', 'short'), ('B', 'dog', 'short')],
   ....:     names=['exp', 'animal', 'hair_length']
   ....: )
   ....: 

In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)

In [25]: df
Out[25]: 
exp                 A         B         A         B
animal            cat       cat       dog       dog
hair_length      long      long     short     short
0            1.075770 -0.109050  1.643563 -1.469388
1            0.357021 -0.674600 -1.776904 -0.968914
2           -1.294524  0.413738  0.276662 -0.472035
3           -0.013960 -0.362543 -0.006154 -0.923061

In [26]: df.stack(level=['animal', 'hair_length'])
Out[26]: 
exp                          A         B
  animal hair_length                    
0 cat    long         1.075770 -0.109050
  dog    short        1.643563 -1.469388
1 cat    long         0.357021 -0.674600
  dog    short       -1.776904 -0.968914
2 cat    long        -1.294524  0.413738
  dog    short        0.276662 -0.472035
3 cat    long        -0.013960 -0.362543
  dog    short       -0.006154 -0.923061

上面等價(jià)于:

In [27]: df.stack(level=[1, 2])

使用melt

melt指定特定的列作為標(biāo)志變量,其他的列被轉(zhuǎn)換為行的數(shù)據(jù)。并放置在新的兩個(gè)列:variable和value中。

上面例子中我們指定了兩列first和last,這兩列是不變的,height和weight被變換成為行數(shù)據(jù)。

舉個(gè)例子:

In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
   ....:                        'last': ['Doe', 'Bo'],
   ....:                        'height': [5.5, 6.0],
   ....:                        'weight': [130, 150]})
   ....: 

In [42]: cheese
Out[42]: 
  first last  height  weight
0  John  Doe     5.5     130
1  Mary   Bo     6.0     150

In [43]: cheese.melt(id_vars=['first', 'last'])
Out[43]: 
  first last variable  value
0  John  Doe   height    5.5
1  Mary   Bo   height    6.0
2  John  Doe   weight  130.0
3  Mary   Bo   weight  150.0

In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
Out[44]: 
  first last quantity  value
0  John  Doe   height    5.5
1  Mary   Bo   height    6.0
2  John  Doe   weight  130.0
3  Mary   Bo   weight  150.0

使用Pivot tables

雖然Pivot可以進(jìn)行DF的軸轉(zhuǎn)置,Pandas還提供了 pivot_table() 在轉(zhuǎn)置的同時(shí)可以進(jìn)行數(shù)值的統(tǒng)計(jì)。

pivot_table() 接收下面的參數(shù):

data: 一個(gè)df對象

values:一列或者多列待聚合的數(shù)據(jù)。

Index: index的分組對象

Columns: 列的分組對象

Aggfunc: 聚合的方法。

先創(chuàng)建一個(gè)df:

In [59]: import datetime

In [60]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
   ....:                    'B': ['A', 'B', 'C'] * 8,
   ....:                    'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
   ....:                    'D': np.random.randn(24),
   ....:                    'E': np.random.randn(24),
   ....:                    'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)]
   ....:                    + [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
   ....: 

In [61]: df
Out[61]: 
        A  B    C         D         E          F
0     one  A  foo  0.341734 -0.317441 2013-01-01
1     one  B  foo  0.959726 -1.236269 2013-02-01
2     two  C  foo -1.110336  0.896171 2013-03-01
3   three  A  bar -0.619976 -0.487602 2013-04-01
4     one  B  bar  0.149748 -0.082240 2013-05-01
..    ... ..  ...       ...       ...        ...
19  three  B  foo  0.690579 -2.213588 2013-08-15
20    one  C  foo  0.995761  1.063327 2013-09-15
21    one  A  bar  2.396780  1.266143 2013-10-15
22    two  B  bar  0.014871  0.299368 2013-11-15
23  three  C  bar  3.357427 -0.863838 2013-12-15

[24 rows x 6 columns]

下面是幾個(gè)聚合的例子:

In [62]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[62]: 
C             bar       foo
A     B                    
one   A  1.120915 -0.514058
      B -0.338421  0.002759
      C -0.538846  0.699535
three A -1.181568       NaN
      B       NaN  0.433512
      C  0.588783       NaN
two   A       NaN  1.000985
      B  0.158248       NaN
      C       NaN  0.176180

In [63]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
Out[63]: 
A       one               three                 two          
C       bar       foo       bar       foo       bar       foo
B                                                            
A  2.241830 -1.028115 -2.363137       NaN       NaN  2.001971
B -0.676843  0.005518       NaN  0.867024  0.316495       NaN
C -1.077692  1.399070  1.177566       NaN       NaN  0.352360

In [64]: pd.pivot_table(df, values=['D', 'E'], index=['B'], columns=['A', 'C'],
   ....:                aggfunc=np.sum)
   ....: 
Out[64]: 
          D                                                           E                                                  
A       one               three                 two                 one               three                 two          
C       bar       foo       bar       foo       bar       foo       bar       foo       bar       foo       bar       foo
B                                                                                                                        
A  2.241830 -1.028115 -2.363137       NaN       NaN  2.001971  2.786113 -0.043211  1.922577       NaN       NaN  0.128491
B -0.676843  0.005518       NaN  0.867024  0.316495       NaN  1.368280 -1.103384       NaN -2.128743 -0.194294       NaN
C -1.077692  1.399070  1.177566       NaN       NaN  0.352360 -1.976883  1.495717 -0.263660       NaN       NaN  0.872482

添加margins=True會添加一個(gè)All列,表示對所有的列進(jìn)行聚合:

In [69]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
Out[69]: 
                D                             E                    
C             bar       foo       All       bar       foo       All
A     B                                                            
one   A  1.804346  1.210272  1.569879  0.179483  0.418374  0.858005
      B  0.690376  1.353355  0.898998  1.083825  0.968138  1.101401
      C  0.273641  0.418926  0.771139  1.689271  0.446140  1.422136
three A  0.794212       NaN  0.794212  2.049040       NaN  2.049040
      B       NaN  0.363548  0.363548       NaN  1.625237  1.625237
      C  3.915454       NaN  3.915454  1.035215       NaN  1.035215
two   A       NaN  0.442998  0.442998       NaN  0.447104  0.447104
      B  0.202765       NaN  0.202765  0.560757       NaN  0.560757
      C       NaN  1.819408  1.819408       NaN  0.650439  0.650439
All      1.556686  0.952552  1.246608  1.250924  0.899904  1.059389

使用crosstab

Crosstab 用來統(tǒng)計(jì)表格中元素的出現(xiàn)次數(shù)。

In [70]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'

In [71]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)

In [72]: b = np.array([one, one, two, one, two, one], dtype=object)

In [73]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)

In [74]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
Out[74]: 
b    one        two      
c   dull shiny dull shiny
a                        
bar    1     0    0     1
foo    2     1    1     0

crosstab可以接收兩個(gè)Series:

In [75]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
   ....:                    'C': [1, 1, np.nan, 1, 1]})
   ....: 

In [76]: df
Out[76]: 
   A  B    C
0  1  3  1.0
1  2  3  1.0
2  2  4  NaN
3  2  4  1.0
4  2  4  1.0

In [77]: pd.crosstab(df['A'], df['B'])
Out[77]: 
B  3  4
A      
1  1  0
2  1  3

還可以使用normalize來指定比例值:

In [82]: pd.crosstab(df['A'], df['B'], normalize=True)
Out[82]: 
B    3    4
A          
1  0.2  0.0
2  0.2  0.6

還可以normalize行或者列:

In [83]: pd.crosstab(df['A'], df['B'], normalize='columns')
Out[83]: 
B    3    4
A          
1  0.5  0.0
2  0.5  1.0

可以指定聚合方法:

In [84]: pd.crosstab(df['A'], df['B'], values=df['C'], aggfunc=np.sum)
Out[84]: 
B    3    4
A          
1  1.0  NaN
2  1.0  2.0

get_dummies

get_dummies可以將DF中的一列轉(zhuǎn)換成為k列的0和1組合:

df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})

df
Out[9]: 
   data1 key
0      0   b
1      1   b
2      2   a
3      3   c
4      4   a
5      5   b

pd.get_dummies(df['key'])
Out[10]: 
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

get_dummies 和 cut 可以進(jìn)行結(jié)合用來統(tǒng)計(jì)范圍內(nèi)的元素:

In [95]: values = np.random.randn(10)

In [96]: values
Out[96]: 
array([ 0.4082, -1.0481, -0.0257, -0.9884,  0.0941,  1.2627,  1.29  ,
        0.0824, -0.0558,  0.5366])

In [97]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [98]: pd.get_dummies(pd.cut(values, bins))
Out[98]: 
   (0.0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1.0]
0           0           0           1           0           0
1           0           0           0           0           0
2           0           0           0           0           0
3           0           0           0           0           0
4           1           0           0           0           0
5           0           0           0           0           0
6           0           0           0           0           0
7           1           0           0           0           0
8           0           0           0           0           0
9           0           0           1           0           0

get_dummies還可以接受一個(gè)DF參數(shù):

In [99]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
   ....:                    'C': [1, 2, 3]})
   ....: 

In [100]: pd.get_dummies(df)
Out[100]: 
   C  A_a  A_b  B_b  B_c
0  1    1    0    0    1
1  2    0    1    0    1
2  3    1    0    1    0

到此這篇關(guān)于Pandas實(shí)現(xiàn)Dataframe的重排和旋轉(zhuǎn)的文章就介紹到這了,更多相關(guān)Pandas Dataframe重排和旋轉(zhuǎn)內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Pandas實(shí)現(xiàn)Dataframe的合并
  • pandas中DataFrame數(shù)據(jù)合并連接(merge、join、concat)
  • 教你漂亮打印Pandas DataFrames和Series
  • pandas中DataFrame檢測重復(fù)值的實(shí)現(xiàn)
  • 使用pandas忽略行列索引,縱向拼接多個(gè)dataframe
  • Pandas.DataFrame轉(zhuǎn)置的實(shí)現(xiàn)
  • Pandas中DataFrame交換列順序的方法實(shí)現(xiàn)
  • 詳解pandas中利用DataFrame對象的.loc[]、.iloc[]方法抽取數(shù)據(jù)
  • Pandas中兩個(gè)dataframe的交集和差集的示例代碼
  • Pandas DataFrame求差集的示例代碼
  • 淺談pandas dataframe對除數(shù)是零的處理
  • Pandas中DataFrame數(shù)據(jù)刪除詳情

標(biāo)簽:吉林 岳陽 清遠(yuǎn) 長春 怒江 安慶 泉州 洛陽

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Pandas實(shí)現(xiàn)Dataframe的重排和旋轉(zhuǎn)》,本文關(guān)鍵詞  Pandas,實(shí)現(xiàn),Dataframe,的,重排,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Pandas實(shí)現(xiàn)Dataframe的重排和旋轉(zhuǎn)》相關(guān)的同類信息!
  • 本頁收集關(guān)于Pandas實(shí)現(xiàn)Dataframe的重排和旋轉(zhuǎn)的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    99re热这里只有精品视频| 免费看欧美女人艹b| 国产一区二区三区观看| 亚洲国产视频在线| 国产伦精品一区二区三区免费 | 制服丝袜激情欧洲亚洲| 国产伦精一区二区三区| 亚洲欧美日韩国产成人精品影院 | 亚洲伦理在线精品| 久久精品人人爽人人爽| 日韩精品在线一区| 蜜臀av性久久久久蜜臀aⅴ流畅| 欧美一区二区视频免费观看| 亚洲精品久久久久久国产精华液| 国产成人a级片| 亚洲精品视频在线看| 经典三级视频一区| 无码av中文一区二区三区桃花岛| 中文字幕一区二区三区四区| 久久精品亚洲一区二区三区浴池| 欧美一级在线观看| 在线不卡中文字幕播放| 欧美视频第二页| 色爱区综合激月婷婷| 色www精品视频在线观看| 国产成人精品免费在线| 国产99精品国产| 成人理论电影网| 99久久伊人久久99| 91美女视频网站| 色综合一个色综合| 色婷婷av一区二区三区软件| 色呦呦国产精品| 在线视频你懂得一区| 欧美人妖巨大在线| 日韩视频123| 久久综合色婷婷| 国产精品视频九色porn| 国产精品久久久久久久久久免费看| 国产精品沙发午睡系列990531| 国产欧美视频一区二区| 国产日韩欧美精品综合| 亚洲人123区| 日韩黄色片在线观看| 婷婷国产v国产偷v亚洲高清| 久久av资源网| 国产高清精品网站| 91亚洲精品久久久蜜桃| 欧美日韩一区三区| 日韩精品中文字幕在线一区| 国产精品久久毛片av大全日韩| 亚洲激情男女视频| 热久久久久久久| 丁香六月综合激情| 色琪琪一区二区三区亚洲区| 91精品啪在线观看国产60岁| 国产亚洲成aⅴ人片在线观看| 亚洲天堂网中文字| 蜜臀av一区二区三区| 国产揄拍国内精品对白| 91视频.com| 欧美一区二区三区爱爱| 久久久99久久| 九色综合狠狠综合久久| 国产1区2区3区精品美女| 欧美曰成人黄网| 久久亚洲免费视频| 亚洲色图视频网| 亚洲444eee在线观看| 国产成人精品影院| 91精品国产综合久久久久久久 | 欧美成人精品1314www| 国产精品午夜在线观看| 无码av免费一区二区三区试看 | 欧美精品日韩一本| 久久久国产午夜精品| 自拍偷拍亚洲欧美日韩| 久久精品国产秦先生| 91极品美女在线| 337p日本欧洲亚洲大胆精品| 亚洲一区二区欧美日韩| 国产精品18久久久久久久久 | 国产日韩欧美激情| 亚洲地区一二三色| aaa国产一区| 精品国产伦一区二区三区免费 | 精品一区中文字幕| 欧美日韩卡一卡二| 亚洲欧洲一区二区在线播放| 国产麻豆精品在线| 欧美精品久久99久久在免费线| 国产精品国产精品国产专区不蜜| 久久99国产精品尤物| 欧美日本一区二区| 亚洲国产日韩综合久久精品| 成人a免费在线看| 中文字幕欧美激情| 狠狠色综合播放一区二区| 制服丝袜亚洲播放| 日韩精品福利网| 亚洲视频在线观看一区| 成人福利电影精品一区二区在线观看| 欧美大片在线观看一区二区| 三级一区在线视频先锋 | 成人av在线网| 久久精品日产第一区二区三区高清版| 久久国产精品露脸对白| 日韩一区二区三区视频在线观看| 人人爽香蕉精品| 91精品国产一区二区三区| 婷婷成人综合网| 91精品国产一区二区人妖| 免费在线观看视频一区| 91精品国产综合久久香蕉的特点 | www.在线欧美| 综合欧美亚洲日本| 色综合久久综合| 亚洲午夜三级在线| 欧美日本乱大交xxxxx| 精品一区二区三区久久久| 久久亚洲精品国产精品紫薇| 成人免费va视频| 亚洲精品成人精品456| 欧美日韩在线观看一区二区| 乱中年女人伦av一区二区| 国产夜色精品一区二区av| 成人一级黄色片| 亚洲影院免费观看| 欧美成人精品二区三区99精品| 国产iv一区二区三区| 怡红院av一区二区三区| 欧美福利一区二区| 国产成人免费高清| 一区二区三区蜜桃| 日韩欧美一级二级三级| 国产精品系列在线播放| 一区二区久久久| 精品久久久网站| 91蝌蚪porny九色| 麻豆国产91在线播放| 日本一区二区久久| 欧美日韩亚州综合| 国产99精品在线观看| 午夜伊人狠狠久久| 欧美国产日韩a欧美在线观看 | 久久亚洲捆绑美女| 欧美视频三区在线播放| 狠狠色综合播放一区二区| 国产精品高潮呻吟| 91麻豆精品国产91久久久使用方法| 国产福利91精品一区二区三区| 亚洲观看高清完整版在线观看| 欧美成人伊人久久综合网| 色噜噜偷拍精品综合在线| 日本三级韩国三级欧美三级| 国产精品女人毛片| 日韩视频免费观看高清完整版| 91免费看视频| 国产激情视频一区二区三区欧美| 亚洲男同1069视频| 日韩一级黄色大片| 在线观看免费亚洲| 国产福利不卡视频| 久久av资源站| 青青草国产精品亚洲专区无| 亚洲一区在线观看视频| 久久综合久久综合久久| 欧洲在线/亚洲| 国产黄色成人av| 美女精品一区二区| 亚洲综合男人的天堂| 中文字幕av一区二区三区免费看 | www激情久久| 欧美精选午夜久久久乱码6080| 色先锋久久av资源部| av电影在线观看一区| 国产成人免费在线观看不卡| 日韩av不卡在线观看| 午夜欧美在线一二页| 国产精品国产馆在线真实露脸| 久久女同互慰一区二区三区| 日韩色视频在线观看| 日韩视频国产视频| 色婷婷综合久久久久中文一区二区 | 亚洲天堂久久久久久久| 国产精品丝袜91| 精品美女在线播放| 日韩欧美黄色影院| 884aa四虎影成人精品一区| 911精品国产一区二区在线| 欧美性三三影院| 91久久奴性调教| 欧美日韩国产不卡| 色偷偷一区二区三区| 色欲综合视频天天天| 在线区一区二视频| 欧美综合久久久| 91麻豆精品国产91久久久使用方法| 777色狠狠一区二区三区| 欧美videofree性高清杂交|