婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > pytorch_detach 切斷網絡反傳方式

pytorch_detach 切斷網絡反傳方式

熱門標簽:騰訊外呼線路 陜西金融外呼系統 海南400電話如何申請 激戰2地圖標注 公司電話機器人 唐山智能外呼系統一般多少錢 哈爾濱ai外呼系統定制 廣告地圖標注app 白銀外呼系統

detach

官方文檔中,對這個方法是這么介紹的。

    detach = _add_docstr(_C._TensorBase.detach, r"""
    Returns a new Tensor, detached from the current graph.
    The result will never require gradient.
    .. note::
      Returned Tensor uses the same data tensor as the original one.
      In-place modifications on either of them will be seen, and may trigger
      errors in correctness checks.
    """)

返回一個新的從當前圖中分離的 Variable。

返回的 Variable 永遠不會需要梯度

如果 被 detach 的Variable volatile=True, 那么 detach 出來的 volatile 也為 True

還有一個注意事項,即:返回的 Variable 和 被 detach 的Variable 指向同一個 tensor

import torch
from torch.nn import init
t1 = torch.tensor([1., 2.],requires_grad=True)
t2 = torch.tensor([2., 3.],requires_grad=True)
v3 = t1 + t2
v3_detached = v3.detach()
v3_detached.data.add_(t1) # 修改了 v3_detached Variable中 tensor 的值
print(v3, v3_detached)    # v3 中tensor 的值也會改變
print(v3.requires_grad,v3_detached.requires_grad)
'''
tensor([4., 7.], grad_fn=AddBackward0>) tensor([4., 7.])
True False
'''

在pytorch中通過拷貝需要切斷位置前的tensor實現這個功能。tensor中拷貝的函數有兩個,一個是clone(),另外一個是copy_(),clone()相當于完全復制了之前的tensor,他的梯度也會復制,而且在反向傳播時,克隆的樣本和結果是等價的,可以簡單的理解為clone只是給了同一個tensor不同的代號,和‘='等價。所以如果想要生成一個新的分開的tensor,請使用copy_()。

不過對于這樣的操作,pytorch中有專門的函數——detach()。

用戶自己創建的節點是leaf_node(如圖中的abc三個節點),不依賴于其他變量,對于leaf_node不能進行in_place操作.根節點是計算圖的最終目標(如圖y),通過鏈式法則可以計算出所有節點相對于根節點的梯度值.這一過程通過調用root.backward()就可以實現.

因此,detach所做的就是,重新聲明一個變量,指向原變量的存放位置,但是requires_grad為false.更深入一點的理解是,計算圖從detach過的變量這里就斷了, 它變成了一個leaf_node.即使之后重新將它的requires_node置為true,它也不會具有梯度.

pytorch 梯度

(0.4之后),tensor和variable合并,tensor具有grad、grad_fn等屬性;

默認創建的tensor,grad默認為False, 如果當前tensor_grad為None,則不會向前傳播,如果有其它支路具有grad,則只傳播其它支路的grad

# 默認創建requires_grad = False的Tensor
x = torch.ones(1)   # create a tensor with requires_grad=False (default)
print(x.requires_grad)
 # out: False
 
 # 創建另一個Tensor,同樣requires_grad = False
y = torch.ones(1)  # another tensor with requires_grad=False
 # both inputs have requires_grad=False. so does the output
z = x + y
 # 因為兩個Tensor x,y,requires_grad=False.都無法實現自動微分,
 # 所以操作(operation)z=x+y后的z也是無法自動微分,requires_grad=False
print(z.requires_grad)
 # out: False
 
 # then autograd won't track this computation. let's verify!
 # 因而無法autograd,程序報錯
# z.backward()
 # out:程序報錯:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
    
# now create a tensor with requires_grad=True
w = torch.ones(1, requires_grad=True)
print(w.requires_grad)
 # out: True
 
 # add to the previous result that has require_grad=False
 # 因為total的操作中輸入Tensor w的requires_grad=True,因而操作可以進行反向傳播和自動求導。
total = w + z
# the total sum now requires grad!
total.requires_grad
# out: True
# autograd can compute the gradients as well
total.backward()
print(w.grad)
#out: tensor([ 1.])
# and no computation is wasted to compute gradients for x, y and z, which don't require grad
# 由于z,x,y的requires_grad=False,所以并沒有計算三者的梯度
z.grad == x.grad == y.grad == None
# True

nn.Paramter

import torch.nn.functional as F
# With square kernels and equal stride
filters = torch.randn(8,4,3,3)
weiths = torch.nn.Parameter(torch.randn(8,4,3,3))
inputs = torch.randn(1,4,5,5)
out = F.conv2d(inputs, weiths, stride=2,padding=1)
print(out.shape)
con2d = torch.nn.Conv2d(4,8,3,stride=2,padding=1)
out_2 = con2d(inputs)
print(out_2.shape)

補充:Pytorch-detach()用法

目的:

神經網絡的訓練有時候可能希望保持一部分的網絡參數不變,只對其中一部分的參數進行調整。

或者訓練部分分支網絡,并不讓其梯度對主網絡的梯度造成影響.這時候我們就需要使用detach()函數來切斷一些分支的反向傳播.

1 tensor.detach()

返回一個新的tensor,從當前計算圖中分離下來。但是仍指向原變量的存放位置,不同之處只是requirse_grad為false.得到的這個tensir永遠不需要計算器梯度,不具有grad.

即使之后重新將它的requires_grad置為true,它也不會具有梯度grad.這樣我們就會繼續使用這個新的tensor進行計算,后面當我們進行反向傳播時,到該調用detach()的tensor就會停止,不能再繼續向前進行傳播.

注意:

使用detach返回的tensor和原始的tensor共同一個內存,即一個修改另一個也會跟著改變。

比如正常的例子是:

import torch 
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a)
print(a.grad)
out = a.sigmoid()
 
out.sum().backward()
print(a.grad)

輸出

tensor([1., 2., 3.], requires_grad=True)

None

tensor([0.1966, 0.1050, 0.0452])

1.1 當使用detach()分離tensor但是沒有更改這個tensor時,并不會影響backward():

import torch 
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
 
#添加detach(),c的requires_grad為False
c = out.detach()
print(c)
 
#這時候沒有對c進行更改,所以并不會影響backward()
out.sum().backward()
print(a.grad)
 
'''返回:
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
'''

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • pytorch 禁止/允許計算局部梯度的操作
  • 如何利用Pytorch計算三角函數
  • 聊聊PyTorch中eval和no_grad的關系
  • Pytorch實現圖像識別之數字識別(附詳細注釋)
  • Pytorch實現全連接層的操作
  • pytorch 優化器(optim)不同參數組,不同學習率設置的操作
  • PyTorch 如何將CIFAR100數據按類標歸類保存
  • PyTorch的Debug指南
  • Python深度學習之使用Pytorch搭建ShuffleNetv2
  • win10系統配置GPU版本Pytorch的詳細教程
  • 淺談pytorch中的nn.Sequential(*net[3: 5])是啥意思
  • pytorch visdom安裝開啟及使用方法
  • PyTorch CUDA環境配置及安裝的步驟(圖文教程)
  • pytorch中的nn.ZeroPad2d()零填充函數實例詳解
  • 使用pytorch實現線性回歸
  • pytorch實現線性回歸以及多元回歸
  • PyTorch學習之軟件準備與基本操作總結

標簽:惠州 益陽 鷹潭 常德 黑龍江 黔西 四川 上海

巨人網絡通訊聲明:本文標題《pytorch_detach 切斷網絡反傳方式》,本文關鍵詞  pytorch,detach,切斷,網絡,反傳,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《pytorch_detach 切斷網絡反傳方式》相關的同類信息!
  • 本頁收集關于pytorch_detach 切斷網絡反傳方式的相關信息資訊供網民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    国产欧美精品日韩区二区麻豆天美| 一区二区三区国产精品| 国产米奇在线777精品观看| 日本在线播放一区二区三区| 97精品久久久午夜一区二区三区 | 在线欧美日韩国产| 日本午夜一本久久久综合| 精品中文av资源站在线观看| 欧美性受极品xxxx喷水| 欧美一区二区高清| 亚洲网友自拍偷拍| 欧美a级理论片| 日韩欧美色电影| 久久久国产精品麻豆| 久久精品99久久久| 成人伦理片在线| 亚洲同性同志一二三专区| 欧美一区二区三区在线看| 视频在线观看国产精品| 国产精品伦一区| 婷婷久久综合九色综合绿巨人 | 国产成人av电影在线| 中文字幕一区二区不卡| 亚洲日本韩国一区| 一区视频在线播放| 激情综合色播五月| 91黄视频在线观看| 亚洲欧美在线另类| 99久久精品国产一区| 一区在线中文字幕| 欧美三级日韩三级| 久久精品国内一区二区三区| 9191精品国产综合久久久久久| 国产精品一二三在| 亚洲欧美国产77777| 大美女一区二区三区| 久久狠狠亚洲综合| 欧美三日本三级三级在线播放| 日本美女视频一区二区| 亚洲国产成人一区二区三区| 日韩电影一区二区三区| 大尺度一区二区| 日本不卡一区二区| 亚洲乱码国产乱码精品精的特点| 日韩西西人体444www| 国产精品初高中害羞小美女文| 色噜噜狠狠色综合中国| 午夜精品一区二区三区三上悠亚| 久久先锋影音av| 欧美乱妇23p| 国产欧美视频一区二区| 日韩女优av电影在线观看| 在线精品亚洲一区二区不卡| 91麻豆精品国产91久久久资源速度| 91视频你懂的| www.欧美日韩国产在线| 久久99国产精品免费| 久久久久国产免费免费| 精品国产凹凸成av人网站| 91麻豆精品国产91久久久久久久久 | 爽爽淫人综合网网站| 1区2区3区国产精品| 国产日韩欧美亚洲| 视频在线观看91| 亚洲成年人网站在线观看| 中文字幕综合网| 欧美久久久久久久久中文字幕| 欧美三级中文字| 日韩欧美在线综合网| 精品国产91乱码一区二区三区| 日韩亚洲欧美在线观看| 国产亚洲成av人在线观看导航| 国产欧美视频一区二区| 亚洲精品高清视频在线观看| 亚洲综合精品自拍| 精品亚洲国产成人av制服丝袜| 黄色精品一二区| 99久久婷婷国产综合精品| 欧美视频三区在线播放| 精品欧美一区二区久久| 亚洲国产成人一区二区三区| 精品毛片乱码1区2区3区| 亚洲欧美在线另类| 首页国产欧美日韩丝袜| 99re热视频精品| 在线观看91视频| 欧美韩国一区二区| 久久国产精品免费| 99re这里都是精品| 91亚洲精华国产精华精华液| 欧美一区二区日韩一区二区| 国产精品乱人伦一区二区| 全国精品久久少妇| 在线日韩av片| 中文字幕在线视频一区| 久久精品72免费观看| 欧美性色黄大片手机版| 国产精品激情偷乱一区二区∴| 国产一区二区电影| 成人动漫av在线| 久久精品亚洲一区二区三区浴池| 视频一区二区不卡| 91精品欧美久久久久久动漫 | 亚洲va天堂va国产va久| 国产馆精品极品| 精品国产sm最大网站| 国产在线乱码一区二区三区| 欧美精品乱人伦久久久久久| 韩国精品久久久| 国产精品国产精品国产专区不蜜| 亚洲五码中文字幕| 欧美午夜电影网| 久久久午夜精品理论片中文字幕| 亚洲444eee在线观看| av午夜一区麻豆| 一区二区在线电影| 欧美片在线播放| 亚洲一区二三区| 欧美日韩日本视频| 美脚の诱脚舐め脚责91| 久久久亚洲午夜电影| www.亚洲精品| 亚洲高清久久久| 精品国产一区二区三区av性色| 国产成人精品亚洲日本在线桃色| 亚洲视频在线观看三级| 99久久免费精品高清特色大片| 午夜婷婷国产麻豆精品| 国产精品婷婷午夜在线观看| 7878成人国产在线观看| 色婷婷综合久久久| 一区二区三区欧美| www激情久久| 91精品国产美女浴室洗澡无遮挡| 国产91清纯白嫩初高中在线观看| 一区二区三区蜜桃网| 欧美日韩国产成人在线免费| 成人性生交大合| 7777精品伊人久久久大香线蕉的| 国产激情视频一区二区三区欧美| 婷婷激情综合网| 日韩精品欧美成人高清一区二区| 日韩理论片中文av| 亚洲精品水蜜桃| 国产午夜精品一区二区三区四区| 欧美乱妇20p| 色综合久久中文综合久久牛| 国产一区二区三区四区在线观看| 国产精品天干天干在线综合| 91精品国产综合久久精品app| 国产在线日韩欧美| 老司机精品视频导航| 日本在线播放一区二区三区| 亚洲人成在线播放网站岛国| 国产精品久久精品日日| 中文字幕在线一区二区三区| 亚洲精选免费视频| 一区二区三区高清| 丝袜诱惑亚洲看片| 精品一区二区三区的国产在线播放| 婷婷中文字幕综合| 亚洲国产乱码最新视频| 亚洲三级电影网站| 香蕉成人啪国产精品视频综合网| 亚洲超碰精品一区二区| 欧美影视一区二区三区| 亚洲一区二区精品3399| 欧美日韩国产色站一区二区三区| 日韩精品一级中文字幕精品视频免费观看 | 久久久噜噜噜久久人人看 | 麻豆成人在线观看| 精品少妇一区二区三区视频免付费 | 国产69精品久久99不卡| 日本一区二区不卡视频| 日本韩国一区二区| 日精品一区二区三区| 欧美va亚洲va香蕉在线| av在线播放不卡| 亚洲国产视频一区| 精品日韩99亚洲| 在线免费亚洲电影| 久久精品国产一区二区三| 日韩一区欧美小说| 91精品国产一区二区三区| 国产乱人伦偷精品视频不卡| 亚洲男女毛片无遮挡| 精品国产伦理网| 一本色道久久综合亚洲精品按摩| 蜜臀久久99精品久久久久宅男| 久久久国产综合精品女国产盗摄| 欧美午夜一区二区| 国产在线精品免费| 亚洲午夜国产一区99re久久| 国产女人水真多18毛片18精品视频| 欧美体内she精高潮| 成人综合在线网站| 开心九九激情九九欧美日韩精美视频电影| 中文字幕精品一区二区精品绿巨人 | 欧美一级欧美一级在线播放| 国产精品一二三在|