轉換步驟概覽
- 準備好模型定義文件(.py文件)
- 準備好訓練完成的權重文件(.pth或.pth.tar)
- 安裝onnx和onnxruntime
- 將訓練好的模型轉換為.onnx格式
- 安裝tensorRT
環境參數
ubuntu-18.04
PyTorch-1.8.1
onnx-1.9.0
onnxruntime-1.7.2
cuda-11.1
cudnn-8.2.0
TensorRT-7.2.3.4
PyTorch轉ONNX
Step1:安裝ONNX和ONNXRUNTIME
網上找到的安裝方式是通過pip
pip install onnx
pip install onnxruntime
如果使用的是Anaconda環境,conda安裝也是可以的。
conda install -c conda-forge onnx
conda install -c conda-forge onnxruntime
Step2:安裝netron
netron是用于可視化網絡結構的,便于debug。
Step3 PyTorch轉ONNx
安裝完成后,可以根據下面code進行轉換。
#--*-- coding:utf-8 --*--
import onnx
# 注意這里導入onnx時必須在torch導入之前,否則會出現segmentation fault
import torch
import torchvision
from model import Net
model= Net(args).cuda()#初始化模型
checkpoint = torch.load(checkpoint_path)
net.load_state_dict(checkpoint['state_dict'])#載入訓練好的權重文件
print ("Model and weights LOADED successfully")
export_onnx_file = './net.onnx'
x = torch.onnx.export(net,
torch.randn(1,1,224,224,device='cuda'), #根據輸入要求初始化一個dummy input
export_onnx_file,
verbose=False, #是否以字符串形式顯示計算圖
input_names = ["inputs"]+["params_%d"%i for i in range(120)],#輸入節點的名稱,這里也可以給一個list,list中名稱分別對應每一層可學習的參數,便于后續查詢
output_names = ["outputs"],# 輸出節點的名稱
opset_version = 10,#onnx 支持采用的operator set, 應該和pytorch版本相關
do_constant_folding = True,
dynamic_axes = {"inputs":{0:"batch_size"}, 2:"h", 3:"w"}, "outputs":{0: "batch_size"},})
net = onnx.load('./erfnet.onnx') #加載onnx 計算圖
onnx.checker.check_model(net) # 檢查文件模型是否正確
onnx.helper.printable_graph(net.graph) #輸出onnx的計算圖
dynamic_axes用于指定輸入、輸出中的可變維度。輸入輸出的batch_size在這里都設為了可變,輸入的第2和第3維也設置為了可變。
Step 4:驗證ONNX模型
下面可視化onnx模型,同時測試模型是否正確運行
import netron
import onnxruntime
import numpy as np
from PIL import Image
import cv2
netron.start('./net.onnx')
test_image = np.asarray(Image.open(test_image_path).convert('L'),dtype='float32') /255.
test_image = cv2.resize(np.array(test_image),(224,224),interpolation = cv2.INTER_CUBIC)
test_image = test_image[np.newaxis,np.newaxis,:,:]
session = onnxruntime.InferenceSession('./net.onnx')
outputs = session.run(None, {"inputs": test_image})
print(len(outputs))
print(outputs[0].shape)
#根據需要處理一下outputs[0],并可視化一下結果,看看結果是否正常
ONNX轉TensorRT
Step1:從NVIDIA下載TensorRT下載安裝包 https://developer.nvidia.com/tensorrt
根據自己的cuda版本選擇,我選擇的是TensorRT 7.2.3,下載到本地。
cd download_path
dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.1-trt7.2.3.4-ga-20210226_1-1_amd64.deb
sudo apt-get update
sudo apt-get install tensorrt
查了一下NVIDIA的官方安裝教程https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#install,由于可能需要調用TensorRT Python API,我們還需要先安裝PyCUDA。這邊先插入一下PyCUDA的安裝。
pip install 'pycuda2021.1'
遇到任何問題,請參考官方說明 https://wiki.tiker.net/PyCuda/Installation/Linux/#step-1-download-and-unpack-pycuda
如果使用的是Python 3.X,再執行一下以下安裝。
sudo apt-get install python3-libnvinfer-dev
如果需要ONNX graphsurgeon或使用Python模塊,還需要執行以下命令。
sudo apt-get install onnx-graphsurgeon
驗證是否安裝成功。

得到類似上圖的結果就是安裝成功了。
問題:此時在python中import tensorrt,得到ModuleNotFoundError: No module named 'tensorrt'的報錯信息。
網上查了一下,通過dpkg安裝的tensorrt是默認安裝在系統python中,而不是Anaconda環境的python里的。由于系統默認的python是3.6,而Anaconda里使用的是3.8.8,通過export PYTHONPATH的方式,又會出現python版本不匹配的問題。
重新搜索了一下如何在anaconda環境里安裝tensorRT。
pip3 install --upgrade setuptools pip
pip install nvidia-pyindex
pip install nvidia-tensorrt
驗證一下這是Anconda環境的python是否可以import tensorrt。
import tensorrt
print(tensorrt.__version__)
#輸出8.0.0.3
Step 2:ONNX轉TensorRT
先說一下,在這一步里遇到了*** AttributeError: ‘tensorrt.tensorrt.Builder' object has no attribute 'max_workspace_size'的報錯信息。網上查了一下,是8.0.0.3版本的bug,要退回到7.2.3.4。
emmm…
pip unintall nvidia-tensorrt #先把8.0.0.3版本卸載掉
pip install nvidia-tensorrt==7.2.* --index-url https://pypi.ngc.nvidia.com # 安裝7.2.3.4banben
轉換代碼
import pycuda.autoinit
import pycuda.driver as cuda
import tensorrt as trt
import torch
import time
from PIL import Image
import cv2,os
import torchvision
import numpy as np
from scipy.special import softmax
### get_img_np_nchw h和postprocess_the_output函數根據需要進行修改
TRT_LOGGER = trt.Logger()
def get_img_np_nchw(img_path):
img = Image.open(img_path).convert('L')
img = np.asarray(img, dtype='float32')
img = cv2.resize(np.array(img),(224, 224), interpolation = cv2.INTER_CUBIC)
img = img / 255.
img = img[np.newaxis, np.newaxis]
return image
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
"""host_mom指代cpu內存,device_mem指代GPU內存
"""
self.host = host_mem
self.device = device_mem
def __str__(self):
return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
def __repr__(self):
return self.__str__()
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
def get_engine(max_batch_size=1, onnx_file_path="", engine_file_path="",fp16_mode=False, int8_mode=False,save_engine=False):
"""
params max_batch_size: 預先指定大小好分配顯存
params onnx_file_path: onnx文件路徑
params engine_file_path: 待保存的序列化的引擎文件路徑
params fp16_mode: 是否采用FP16
params int8_mode: 是否采用INT8
params save_engine: 是否保存引擎
returns: ICudaEngine
"""
# 如果已經存在序列化之后的引擎,則直接反序列化得到cudaEngine
if os.path.exists(engine_file_path):
print("Reading engine from file: {}".format(engine_file_path))
with open(engine_file_path, 'rb') as f, \
trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read()) # 反序列化
else: # 由onnx創建cudaEngine
# 使用logger創建一個builder
# builder創建一個計算圖 INetworkDefinition
explicit_batch = 1 (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
# In TensorRT 7.0, the ONNX parser only supports full-dimensions mode, meaning that your network definition must be created with the explicitBatch flag set. For more information, see Working With Dynamic Shapes.
with trt.Builder(TRT_LOGGER) as builder, \
builder.create_network(explicit_batch) as network, \
trt.OnnxParser(network, TRT_LOGGER) as parser, \
builder.create_builder_config() as config: # 使用onnx的解析器綁定計算圖,后續將通過解析填充計算圖
profile = builder.create_optimization_profile()
profile.set_shape("inputs", (1, 1, 224, 224),(1,1,224,224),(1,1,224,224))
config.add_optimization_profile(profile)
config.max_workspace_size = 130 # 預先分配的工作空間大小,即ICudaEngine執行時GPU最大需要的空間
builder.max_batch_size = max_batch_size # 執行時最大可以使用的batchsize
builder.fp16_mode = fp16_mode
builder.int8_mode = int8_mode
if int8_mode:
# To be updated
raise NotImplementedError
# 解析onnx文件,填充計算圖
if not os.path.exists(onnx_file_path):
quit("ONNX file {} not found!".format(onnx_file_path))
print('loading onnx file from path {} ...'.format(onnx_file_path))
# with open(onnx_file_path, 'rb') as model: # 二值化的網絡結果和參數
# print("Begining onnx file parsing")
# parser.parse(model.read()) # 解析onnx文件
parser.parse_from_file(onnx_file_path) # parser還有一個從文件解析onnx的方法
print("Completed parsing of onnx file")
# 填充計算圖完成后,則使用builder從計算圖中創建CudaEngine
print("Building an engine from file{}' this may take a while...".format(onnx_file_path))
#################
# import pdb;pdb.set_trace()
print(network.get_layer(network.num_layers-1).get_output(0).shape)
# network.mark_output(network.get_layer(network.num_layers -1).get_output(0))
engine = builder.build_engine(network,config) # 注意,這里的network是INetworkDefinition類型,即填充后的計算圖
print("Completed creating Engine")
if save_engine: #保存engine供以后直接反序列化使用
with open(engine_file_path, 'wb') as f:
f.write(engine.serialize()) # 序列化
return engine
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
# Transfer data from CPU to the GPU.
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
# Run inference.
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
# Return only the host outputs.
return [out.host for out in outputs]
def postprocess_the_outputs(outputs, shape_of_output):
outputs = outputs.reshape(*shape_of_output)
out = np.argmax(softmax(outputs,axis=1)[0,...],axis=0)
# import pdb;pdb.set_trace()
return out
# 驗證TensorRT模型是否正確
onnx_model_path = './Net.onnx'
max_batch_size = 1
# These two modes are dependent on hardwares
fp16_mode = False
int8_mode = False
trt_engine_path = './model_fp16_{}_int8_{}.trt'.format(fp16_mode, int8_mode)
# Build an engine
engine = get_engine(max_batch_size, onnx_model_path, trt_engine_path, fp16_mode, int8_mode , save_engine=True)
# Create the context for this engine
context = engine.create_execution_context()
# Allocate buffers for input and output
inputs, outputs, bindings, stream = allocate_buffers(engine) # input, output: host # bindings
# Do inference
img_np_nchw = get_img_np_nchw(img_path)
inputs[0].host = img_np_nchw.reshape(-1)
shape_of_output = (max_batch_size, 2, 224, 224)
# inputs[1].host = ... for multiple input
t1 = time.time()
trt_outputs = do_inference(context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream) # numpy data
t2 = time.time()
feat = postprocess_the_outputs(trt_outputs[0], shape_of_output)
print('TensorRT ok')
print("Inference time with the TensorRT engine: {}".format(t2-t1))
根據https://www.jb51.net/article/187266.htm文章里的方法,轉換的時候會報下面的錯誤:

原來我是根據鏈接里的代買進行轉換的,后來進行了修改,按我文中的轉換代碼不會有問題,
修改的地方在:
with trt.Builder(TRT_LOGGER) as builder, \
builder.create_network(explicit_batch) as network, \
trt.OnnxParser(network, TRT_LOGGER) as parser, \
builder.create_builder_config() as config: # 使用onnx的解析器綁定計算圖,后續將通過解析填充計算圖
profile = builder.create_optimization_profile()
profile.set_shape("inputs", (1, 1, 224, 224),(1,1,224,224),(1,1,224,224))
config.add_optimization_profile(profile)
config.max_workspace_size = 130 # 預先分配的工作空間大小,即ICudaEngine執行時GPU最大需要的空間
engine = builder.build_engine(network,config)
將鏈接中相應的代碼進行修改或添加,就沒有這個問題了。
到此這篇關于PyTorch模型轉TensorRT是怎么實現的?的文章就介紹到這了,更多相關PyTorch模型轉TensorRT內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- Pytorch通過保存為ONNX模型轉TensorRT5的實現
- pytorch_pretrained_bert如何將tensorflow模型轉化為pytorch模型
- pytorch模型的保存和加載、checkpoint操作
- PyTorch 如何檢查模型梯度是否可導
- 解決Pytorch修改預訓練模型時遇到key不匹配的情況
- pytorch 預訓練模型讀取修改相關參數的填坑問題